广东省中学山市教育联合体重点名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是( )
A.
B.
C.
D.
2.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
3.下列运算正确的是( )
A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a7
4.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.85° B.105° C.125° D.160°
5.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是( )
A.10 B. C. D.15
6.下列各式中,正确的是( )
A.t5·t5 = 2t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t2·t3 = t5
7.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为( )
A. B.
C. D.
8.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )
A.70° B.60° C.55° D.50°
9.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )
A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×109
10.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.
12.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.
13.如图,圆锥底面半径为r cm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为 .
14.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____.
15.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
16.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.
三、解答题(共8题,共72分)
17.(8分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
18.(8分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
(1)求k、m的值;
(2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.
①当n=3时,求线段AB上的整点个数;
②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
19.(8分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)
20.(8分)如图所示,内接于圆O,于D;
(1)如图1,当AB为直径,求证:;
(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;
(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.
21.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
22.(10分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
23.(12分)解方程:
(1)x2﹣7x﹣18=0
(2)3x(x﹣1)=2﹣2x
24.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由;
(3)若AD=4,AB=6,求的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,
∴2k<0,得k<0,
∴k−2<0,1−k>0,
∴函数y=(k−2)x+1−k图象经过一、二、四象限,
故选B.
2、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、D
【解析】
分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.
【详解】
解:A、a12÷a4=a8,此选项错误;
B、a4•a2=a6,此选项错误;
C、(-a2)3=-a6,此选项错误;
D、a•(a3)2=a•a6=a7,此选项正确;
故选D.
【点睛】
本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.
4、C
【解析】
首先求得AB与正东方向的夹角的度数,即可求解.
【详解】
根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,
故选:C.
【点睛】
本题考查了方向角,正确理解方向角的定义是关键.
5、C
【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
【详解】
A,C之间的距离为6,
2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
∴m=6,
2020﹣2017=3,故点Q与点P的水平距离为3,
∵
解得k=6,
双曲线
1+3=4,
即点Q离x轴的距离为,
∴
∵四边形PDEQ的面积是.
故选:C.
【点睛】
考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
6、D
【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.
7、D
【解析】
根据k>0,k<0,结合两个函数的图象及其性质分类讨论.
【详解】
分两种情况讨论:
①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;
②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.
分析可得:它们在同一直角坐标系中的图象大致是D.
故选D.
【点睛】
本题主要考查二次函数、反比例函数的图象特点.
8、A
【解析】
试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
考点:平行线的性质.
9、A
【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
39000000000=3.9×1.
故选A.
【点睛】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
10、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
【详解】
∵反比例函数y=中,k=1>0,
∴此函数图象的两个分支在一、三象限,
∵x1<x2<0<x1,
∴A、B在第三象限,点C在第一象限,
∴y1<0,y2<0,y1>0,
∵在第三象限y随x的增大而减小,
∴y1>y2,
∴y2<y1<y1.
故选D.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
试题解析:如图,
∵a∥b,∠3=40°,
∴∠4=∠3=40°.
∵∠1=∠2+∠4=110°,
∴∠2=110°-∠4=110°-40°=1°.
故答案为:1.
12、1
【解析】
【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
∴a=﹣4,b=﹣3,
则ab=1,
故答案为1.
【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.
13、1.
【解析】
试题分析:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为211°的扇形,
∴2πr=×2π×10,解得r=1.
故答案为:1.
【考点】圆锥的计算.
14、1
【解析】
设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,
∵tan∠BAO=2,
∴=2,
∵S△ABO=•AO•BO=4,
∴AO=2,BO=4,
∵△ABO≌△A'O'B,
∴AO=A′O′=2,BO=BO′=4,
∵点C为斜边A′B的中点,CD⊥BO′,
∴CD=A′O′=1,BD=BO′=2,
∴x=BO﹣CD=4﹣1=3,y=BD=2,
∴k=x·y=3×2=1.
故答案为1.
15、
【解析】
由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
【详解】
∵2x-y=,
∴-6x+3y=-.
∴原式=--1=-.
故答案为-.
【点睛】
本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
16、
【解析】
试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.
考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.
三、解答题(共8题,共72分)
17、(1)1000 (2)200 (3)54° (4)4000人
【解析】
试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
(3)利用360°乘以对应的比例即可求解;
(4)利用20000除以调查的总人数,然后乘以200即可求解.
试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
(2)剩少量的人数是1000-400-250-150=200(名),
;
(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
(4)×200=4000(人).
答:校20000名学生一餐浪费的食物可供4000人食用一餐.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
18、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.
【解析】
(1)将A点代入直线解析式可求m,再代入,可求k.
(2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.
②根据图象可以直接判断2≤n<3.
【详解】
(1)∵点A(1,m)在y=2x+1上,
∴m=2×1+1=3.
∴A(1,3).
∵点A(1,3)在函数的图象上,
∴k=3.
(2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1).
∵整点在线段AB上
∴1≤x≤3且x为整数
∴x=1,2,3
∴当x=1时,y=3,
当x=2时,y=5,
当x=3时,y=7,
∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.
②由图象可得当2≤n<3时,有五个整点.
【点睛】
本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.
19、(1)1.7km;(2)8.9km;
【解析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
【详解】
解:(1)由题意可得,
∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
∴AO=OC•tan34°,BO=OC•tan45°,
∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
即A,B两点间的距离是1.7km;
(2)由已知可得,
∠DOC=90°,OC=5km,∠DCO=56°,
∴cos∠DCO=
即
∵sin34°=cos56°,
∴
解得,CD≈8.9
答:此时雷达站C和运载火箭D两点间的距离是8.9km.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
20、(1)见解析;(2)成立;(3)
【解析】
(1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;
(2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;
(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.
【详解】
(1)证明:∵AB为直径,
∴,
∵于D,
∴,
∴,,
∴;
(2)成立,
证明:连接OC,
由圆周角定理得:,
∵,
∴,
∵,
∴,
∴;
(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,
∵,,
∴,
∴,,
∵,
∴,
∵根据圆周角定理得:,
∴,
∴由三角形内角和定理得:,
∴,
∴,
同理,
∵,
∴,
在AD上取,延长CG交AK于M,则,
,
∴,
∴,
延长KO交⊙O于N,连接CN、AN,
则,
∴,
∵,
∴,
∴四边形CGAN是平行四边形,
∴,
作于T,
则T为CK的中点,
∵O为KN的中点,
∴,
∵,,
∴由勾股定理得:,
∴,
作直径HS,连接KS,
∵,,
∴由勾股定理得:,
∴,
∴,
设,,
∴,,
∵,
∴,
解得:,
∴,
∴.
【点睛】
本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.
21、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【详解】
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当PB=PC时,OP=OB=3,
∴P3(0,-3);
③当BP=BC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
22、(1)证明见解析(2)4-3
【解析】
试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
∵△EAC是等边三角形, EO是AC边上中线,
∴EO⊥AC,即BD⊥AC,
∴平行四边形ABCD是是菱形.
(2) ∵平行四边形ABCD是是菱形,
∴AO=CO==4,DO=BO,
∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
在Rt△ABO中,由勾股定理可得:BO=3,
∴DO=BO=3,
在Rt△EAO中,由勾股定理可得:EO=4
∴ED=EO-DO=4-3.
23、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣ .
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)x2﹣7x﹣18=0,
(x﹣9)(x+2)=0,
x﹣9=0,x+2=0,
x1=9,x2=﹣2;
(2)3x(x﹣1)=2﹣2x,
3x(x﹣1)+2(x﹣1)=0,
(x﹣1)(3x+2)=0,
x﹣1=0,3x+2=0,
x1=1,x2=﹣ .
【点睛】
本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.
24、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
【解析】
(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
(3)根据相似三角形的性质列出比例式,计算即可.
【详解】
解:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
又∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB;
(2)CE∥AD,
理由:∵△ADC∽△ACB,
∴∠ACB=∠ADC=90°,
又∵E为AB的中点,
∴∠EAC=∠ECA,
∵∠DAC=∠CAE,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵AD=4,AB=6,CE=AB=AE=3,
∵CE∥AD,
∴∠FCE=∠DAC,∠CEF=∠ADF,
∴△CEF∽△ADF,
∴==,
∴=.
乐山市重点中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份乐山市重点中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了已知A样本的数据如下等内容,欢迎下载使用。
2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。
2021-2022学年江苏省丰县重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年江苏省丰县重点名校中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列各数等内容,欢迎下载使用。