|试卷下载
搜索
    上传资料 赚现金
    2022届重庆市第110中学中考数学押题试卷含解析
    立即下载
    加入资料篮
    2022届重庆市第110中学中考数学押题试卷含解析01
    2022届重庆市第110中学中考数学押题试卷含解析02
    2022届重庆市第110中学中考数学押题试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届重庆市第110中学中考数学押题试卷含解析

    展开
    这是一份2022届重庆市第110中学中考数学押题试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,如图,双曲线y=,若a与﹣3互为倒数,则a=,计算-5+1的结果为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知圆内接正三角形的面积为3,则边心距是(  )
    A.2 B.1 C. D.
    2.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是(  )
    A.﹣2 B. C.2 D.4
    3.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )

    A.1 B.2 C.3 D.4
    4.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )

    A.1 B.2 C.3 D.6
    5.方程有两个实数根,则k的取值范围是( ).
    A.k≥1 B.k≤1 C.k>1 D.k<1
    6.若a与﹣3互为倒数,则a=(  )
    A.3 B.﹣3 C. D.-
    7.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
    A. B. C. D.
    8.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为(  )

    A.2π B.4π C.6π D.8π
    9.计算-5+1的结果为( )
    A.-6 B.-4 C.4 D.6
    10.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )

    A.正方体 B.球 C.圆锥 D.圆柱体
    11.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
    A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
    12.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1 A.–2 二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
    14.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
    15.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
    16.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.

    17.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是  .
    18.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=   .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.
    (1)求点M到AB的距离;(结果保留根号)
    (2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)
    (参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

    20.(6分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
    求抛物线顶点M的坐标;
    若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
    在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
    21.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈

    22.(8分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
    求,,的值;求四边形的面积.
    23.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
    (1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
    (2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    24.(10分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
    (1)求证:四边形ABCD是菱形.
    (2)若AC=8,AB=5,求ED的长.

    25.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
    (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
    (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
    26.(12分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点.
    点B,C的坐标分别为______,______;
    是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
    连接PB,若E为PB的中点,连接OE,则OE的最大值______.

    27.(12分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
    (1)求点B的坐标和反比例函数的关系式;
    (2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.
    【详解】
    如图,

    连接AO并延长交BC于点D,则AD⊥BC,
    设OD=x,则AD=3x,
    ∵tan∠BAD=,
    ∴BD= tan30°·AD=x,
    ∴BC=2BD=2x,
    ∵ ,
    ∴×2x×3x=3,
    ∴x=1
    所以该圆的内接正三边形的边心距为1,
    故选B.
    【点睛】
    本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.
    2、C
    【解析】
    分析:将x=-2代入方程即可求出a的值.
    详解:将x=-2代入可得:4a-2a-4=0, 解得:a=2,故选C.
    点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.
    3、B
    【解析】
    先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
    【详解】
    解:在Rt△ABO中,sin∠OAB===,
    ∴∠OAB=60°,
    ∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
    ∴∠CAB=30°,OC⊥AC,
    ∴∠OAC=60°﹣30°=30°,
    在Rt△OAC中,OC=OA=1.
    故选B.
    【点睛】
    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
    4、B
    【解析】
    先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.
    【详解】

    解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),
    则B(c,b),E(c, ),
    设D(x,y),
    ∵D和E都在反比例函数图象上,
    ∴xy=k,
    即 ,
    ∵四边形ODBC的面积为3,


    ∴bc=4

    ∵k>0
    ∴ 解得k=2,
    故答案为:B.
    【点睛】
    本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.
    5、D
    【解析】
    当k=1时,原方程不成立,故k≠1,
    当k≠1时,方程为一元二次方程.
    ∵此方程有两个实数根,
    ∴,解得:k≤1.
    综上k的取值范围是k<1.故选D.
    6、D
    【解析】
    试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
    ∴a=,
    故选C.
    考点:倒数.
    7、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得出答案.
    【详解】
    A.不是轴对称图形,故本选项错误;
    B.是轴对称图形,故本选项正确;
    C.不是轴对称图形,故本选项错误;
    D.不是轴对称图形,故本选项错误.
    故选B.
    8、B
    【解析】
    先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
    【详解】
    在△ABC中,依据勾股定理可知AB==8,
    ∵两等圆⊙A,⊙B外切,
    ∴两圆的半径均为4,
    ∵∠A+∠B=90°,
    ∴阴影部分的面积==4π.
    故选:B.
    【点睛】
    本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
    9、B
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    解:-5+1=-(5-1)=-1.
    故选B.
    【点睛】
    本题考查了有理数的加法.
    10、D
    【解析】
    本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.
    【详解】
    根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.
    故选D.
    【点睛】
    此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.
    11、C
    【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
    当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
    当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
    所以A、B、D选项不符合题意,C选项符合题意,
    故选C.
    12、B
    【解析】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
    【详解】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
    ∵y=0时,x=-2或x=3,
    ∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
    ∵1﹣(x﹣3)(x+2)=0,
    ∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
    ∵-1<0,
    ∴两个抛物线的开口向下,
    ∴x1<﹣2<3<x2,
    故选B.
    【点睛】
    本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、:k<1.
    【解析】
    ∵一元二次方程有两个不相等的实数根,
    ∴△==4﹣4k>0,
    解得:k<1,
    则k的取值范围是:k<1.
    故答案为k<1.
    14、1.
    【解析】
    先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.
    【详解】
    设多边形的边数为n.
    因为正多边形内角和为 ,正多边形外角和为
    根据题意得:
    解得:n=8.
    ∴这个正多边形的每个外角
    则这个正多边形的每个内角是
    故答案为:1.
    【点睛】
    考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.
    15、k≥-1
    【解析】
    首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
    【详解】
    当时,方程是一元一次方程:,方程有实数根;
    当时,方程是一元二次方程,
    解得:且.
    综上所述,关于的方程有实数根,则的取值范围是.
    故答案为
    【点睛】
    考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
    这种情况.
    16、6﹣π
    【解析】
    过F作FM⊥BE于M,则∠FME=∠FMB=90°,

    ∵四边形ABCD是正方形,AB=2,
    ∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
    由勾股定理得:BD=2,
    ∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
    ∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
    ∴BM=FM=2,ME=2,
    ∴阴影部分的面积=×2×2+×4×2+-=6-π.
    故答案为:6-π.
    点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.
    17、(0,0)或(0,﹣8)或(﹣6,0)
    【解析】
    由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
    【详解】
    解:∵P(﹣3,﹣4)到原点距离为5,
    而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
    ∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
    故答案是:(0,0)或(0,﹣8)或(﹣6,0).

    18、
    【解析】
    试题分析:根据已知数字等式得出变化规律,即可得出答案:
    ∵,,,,…,
    ∴。

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) ; (2)95m.
    【解析】
    (1)过点M作MD⊥AB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的距离;
    (2)过点N作NE⊥AB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可.
    【详解】
    解:(1)过点M作MD⊥AB于点D,
    ∵MD⊥AB,
    ∴∠MDA=∠MDB=90°,
    ∵∠MAB=60°,∠MBA=45°,
    ∴在Rt△ADM中,;
    在Rt△BDM中,,
    ∴BD=MD=,
    ∵AB=600m,
    ∴AD+BD=600m,
    ∴AD+,
    ∴AD=(300)m,
    ∴BD=MD=(900-300),
    ∴点M到AB的距离(900-300).
    (2)过点N作NE⊥AB于点E,
    ∵MD⊥AB,NE⊥AB,
    ∴MD∥NE,
    ∵AB∥MN,
    ∴四边形MDEN为平行四边形,
    ∴NE=MD=(900-300),MN=DE,
    ∵∠NBA=53°,
    ∴在Rt△NEB中,,
    ∴BEm,
    ∴MN=AB-AD-BE.

    【点睛】
    考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键.
    20、(1)M的坐标为;(2)B(4,3);(3)或.
    【解析】
    利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案
    根据抛物线的对称性质解答;
    利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围.
    【详解】
    解:(1) ,
    该抛物线的顶点M的坐标为;

    由知,该抛物线的顶点M的坐标为;
    该抛物线的对称轴直线是,
    点A的坐标为,轴,交抛物线于点B,
    点A与点B关于直线对称,

    抛物线与y轴交于点,


    抛物线的表达式为.
    抛物线G的解析式为:
    由.
    由,得:
    抛物线与x轴的交点C的坐标为,
    点C关于y轴的对称点的坐标为.
    把代入,得:.
    把代入,得:.
    所求m的取值范围是或.
    故答案为(1)M的坐标为;(2)B(4,3);(3)或.
    【点睛】
    本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键.
    21、点O到BC的距离为480m.
    【解析】
    作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.
    【详解】
    作OM⊥BC于M,ON⊥AC于N,

    则四边形ONCM为矩形,
    ∴ON=MC,OM=NC,
    设OM=x,则NC=x,AN=840﹣x,
    在Rt△ANO中,∠OAN=45°,
    ∴ON=AN=840﹣x,则MC=ON=840﹣x,
    在Rt△BOM中,BM==x,
    由题意得,840﹣x+x=500,
    解得,x=480,
    答:点O到BC的距离为480m.
    【点睛】
    本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.
    22、(1),,.(2)6
    【解析】
    (1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
    【详解】
    解:(1)∵点在上,
    ∴,
    ∵点在上,且,
    ∴.
    ∵过,两点,
    ∴,
    解得,
    ∴,,.
    (2)如图,延长,交于点,则.
    ∵轴,轴,
    ∴,,
    ∴,,



    .
    ∴四边形的面积为6.

    【点睛】
    考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
    23、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    24、(1)证明见解析(2)4-3
    【解析】
    试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
    试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
    ∵△EAC是等边三角形, EO是AC边上中线,
    ∴EO⊥AC,即BD⊥AC,
    ∴平行四边形ABCD是是菱形.
    (2) ∵平行四边形ABCD是是菱形,
    ∴AO=CO==4,DO=BO,
    ∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
    在Rt△ABO中,由勾股定理可得:BO=3,
    ∴DO=BO=3,
    在Rt△EAO中,由勾股定理可得:EO=4
    ∴ED=EO-DO=4-3.
    25、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
    26、(1)B(1,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).
    【解析】
    试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;
    (2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;
    (1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大.
    试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=﹣4,∴B(1,0),C(0,﹣4);
    故答案为1,0;0,﹣4;
    (2)存在点P,使得△PBC为直角三角形,分两种情况:
    ①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴=2,设OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴ =2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2);
    ②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴ =,∴CH=,P4H=,∴P4(,﹣﹣4);
    同理P1(﹣,﹣4);
    综上所述:点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);
    (1)如图(1),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=,∴OE的最大值为.故答案为.

    27、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
    【解析】
    试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
    (2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
    试题解析:(1)过点A作AP⊥x轴于点P,

    则AP=1,OP=2,
    又∵AB=OC=3,
    ∴B(2,4).,
    ∵反比例函数y= (x>0)的图象经过的B,
    ∴4=,
    ∴k=8.
    ∴反比例函数的关系式为y=;
    (2)①由点A(2,1)可得直线OA的解析式为y=x.
    解方程组,得,.
    ∵点D在第一象限,
    ∴D(4,2).
    由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
    ②把y=0代入y=-x+6,解得x=6,
    ∴E(6,0),
    过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
    由勾股定理可得:ED=.
    点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.

    相关试卷

    重庆市全善中学巴南中学2021-2022学年中考数学押题试卷含解析: 这是一份重庆市全善中学巴南中学2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列判断错误的是,已知,下列实数中是无理数的是等内容,欢迎下载使用。

    重庆市綦江中学2022年中考押题数学预测卷含解析: 这是一份重庆市綦江中学2022年中考押题数学预测卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。

    2022年重庆市第八中学中考数学押题卷含解析: 这是一份2022年重庆市第八中学中考数学押题卷含解析,共19页。试卷主要包含了用一根长为a,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map