2022届浙江省温州市鹿城区中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为( )
A.﹣3 B.﹣1 C.1 D.3
2.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是( )
A. B.
C. D.
3.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )
A.①④ B.①③ C.①②③ D.②③④
4.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100° B.80° C.50° D.20°
5.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )
A. B. C. D.
6.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
7.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
A.50° B.70° C.80° D.110°
8.计算 的结果是( )
A.a2 B.-a2 C.a4 D.-a4
9.下列运算正确的是( )
A.a2•a3=a6 B.()﹣1=﹣2 C. =±4 D.|﹣6|=6
10.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为 cm.
12.如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.
13.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.
14.函数的图象不经过第__________象限.
15.如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为__________米.
16.已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是______.
17.把16a3﹣ab2因式分解_____.
三、解答题(共7小题,满分69分)
18.(10分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
(2)解方程:x(x﹣4)=2x﹣8
19.(5分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
20.(8分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.
21.(10分)一次函数的图象经过点和点,求一次函数的解析式.
22.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)请判断直线BC与⊙O的位置关系,并说明理由;
(2)已知AD=5,CD=4,求BC的长.
23.(12分)综合与实践﹣﹣旋转中的数学
问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:
观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是______;
操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;
操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.
24.(14分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
求证:AP=BQ;当BQ= 时,求的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.
【详解】
解:∵2x2+1x﹣1=1,
∴2x2+1x=2,
则4x2+6x﹣1=2(2x2+1x)﹣1
=2×2﹣1
=4﹣1
=1.
故本题答案为:D.
【点睛】
本题主要考查代数式的求值,运用整体代入的思想是解题的关键.
2、B
【解析】
根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
【详解】
设乙每天完成x个零件,则甲每天完成(x+8)个.
即得, ,故选B.
【点睛】
找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
3、C
【解析】
根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
【详解】
解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
所有点中,只有点D到A距离为2个单位,故③正确;
因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
故选:C.
【点睛】
本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
4、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
5、B
【解析】
根据折叠前后对应角相等可知.
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
6、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
7、C
【解析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
【详解】
因为a∥b,
所以∠1=∠BAD=50°,
因为AD是∠BAC的平分线,
所以∠BAC=2∠BAD=100°,
所以∠2=180°-∠BAC=180°-100°=80°.
故本题正确答案为C.
【点睛】
本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
8、D
【解析】
直接利用同底数幂的乘法运算法则计算得出答案.
【详解】
解:,
故选D.
【点睛】
此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
9、D
【解析】
运用正确的运算法则即可得出答案.
【详解】
A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
【点睛】
本题考查了四则运算法则,熟悉掌握是解决本题的关键.
10、B
【解析】
根据常见几何体的展开图即可得.
【详解】
由展开图可知第一个图形是②正方体的展开图,
第2个图形是①圆柱体的展开图,
第3个图形是③三棱柱的展开图,
第4个图形是④四棱锥的展开图,
故选B
【点睛】
本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、8
【解析】
试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可
解:
∵DE是BC的垂直平分线,
∴BD=CD,
∴AB=AD+BD=AD+CD,
∴△ACD的周长=AD+CD+AC=AB+AC=8cm;
故答案为8
考点:线段垂直平分线的性质
点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等
12、
【解析】
把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a、b的值.
【详解】
把(1,4)代入得:a+b=4
又因为,,且,
所以当a=1是b=3
所以“对偶点”为(1,4)的一对“对偶直线”可以是:
故答案为
【点睛】
此题为新定义题型,关键是理解新定义,并按照新定义的要求解答.
13、.
【解析】
先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.
【详解】
解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
∴AB==1.
∵CD⊥AB,
∴CD=.
∵AD•BD=CD2,
设AD=x,BD=1-x.
解得x=,
∴点A在圆外,点B在圆内,
r的范围是,
故答案为.
【点睛】
本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.
14、三.
【解析】
先根据一次函数判断出函数图象经过的象限,进而可得出结论.
【详解】
解:∵一次函数中,
此函数的图象经过一、二、四象限,不经过第三象限,
故答案为:三.
【点睛】
本题考查的是一次函数的性质,即一次函数中,当,时,函数图象经过一、二、四象限.
15、(14+2)米
【解析】
过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
【详解】
如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
∵CD=8,CD与地面成30°角,
∴DE=CD=×8=4,
根据勾股定理得:CE===4.
∵1m杆的影长为2m,
∴=,
∴EF=2DE=2×4=8,
∴BF=BC+CE+EF=20+4+8=(28+4).
∵=,
∴AB=(28+4)=14+2.
故答案为(14+2).
【点睛】
本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.
16、x<-2或x>1
【解析】
试题分析:根据函数图象可得:当时,x<-2或x>1.
考点:函数图象的性质
17、a(4a+b)(4a﹣b)
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:16a3-ab2
=a(16a2-b2)
=a(4a+b)(4a-b).
故答案为:a(4a+b)(4a-b).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
三、解答题(共7小题,满分69分)
18、(1)3;(1)x1=4,x1=1.
【解析】
(1)根据有理数的混合运算法则计算即可;
(1)先移项,再提取公因式求解即可.
【详解】
解:(1)原式=8×(﹣)﹣4×+1
=8×﹣1+1
=3;
(1)移项得:x(x﹣4)﹣1(x﹣4)=0,
(x﹣4)(x﹣1)=0,
x﹣4=0,x﹣1=0,
x1=4,x1=1.
【点睛】
本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
19、见解析
【解析】
试题分析:证明△ABE≌△ACD 即可.
试题解析:法1:
∵AB=AC,
∴∠B=∠C,
∵AD=CE,
∴∠ADE=∠AED,
∴△ABE≌△ACD,
∴BE=CD ,
∴BD=CE,
法2:如图,作AF⊥BC于F,
∵AB=AC,
∴BF=CF,
∵AD=AE,
∴DF=EF,
∴BF-DF=CF-EF,
即BD=CE.
20、足球单价是60元,篮球单价是90元.
【解析】
设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.
【详解】
解:足球的单价分别为x元,篮球单价是1.5x元,
可得:,
解得:x=60,
经检验x=60是原方程的解,且符合题意,
1.5x=1.5×60=90,
答:足球单价是60元,篮球单价是90元.
【点睛】
本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.
21、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
22、(1)BC与相切;理由见解析;
(2)BC=6
【解析】
试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切
(2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)
试题解析:(1)BC与相切;
∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切
(2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)
考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.
23、(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=
【解析】
(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;
(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;
(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.
【详解】
(1)AA′=CC′,
理由如下:连接AC、A′C′,
∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,
∵A′B′∥AB,
∴点A、A′、C′、C在同一条直线上,
由矩形的性质可知,OA=OC,OA′=OC′,
∴AA′=CC′,
故答案为AA′=CC′;
(2)(1)中的结论还成立,AA′=CC′,
理由如下:连接AC、A′C′,则AC、A′C′都经过点O,
由旋转的性质可知,∠A′OA=∠C′OC,
∵四边形ABCD和四边形A′B′C′D′都是矩形,
∴OA=OC,OA′=OC′,
在△A′OA和△C′OC中,
,
∴△A′OA≌△C′OC,
∴AA′=CC′;
(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,
∵矩形ABCD∽矩形A′B′C′D′,
∴,即,
解得,B′C′=4,
∵∠EB′C=∠B′C′C=∠E=90°,
∴四边形B′ECC′为矩形,
∴EC=B′C′=4,
在Rt△ABC中,AC==10,
在Rt△AEC中,AE==2,
∴AA′+B′E=2﹣3,又AA′=CC′=B′E,
∴AA′=.
【点睛】
本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.
24、(1)详见解析;(2);(3)4<OC<1.
【解析】
(1) 连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.
(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD度数,由弧长公式即可求得答案.
(3)由直角三角形性质可得△APO的外心是OA的中点 ,结合题意可得OC取值范围.
【详解】
(1)证明:连接OQ.
∵AP、BQ是⊙O的切线,
∴OP⊥AP,OQ⊥BQ,
∴∠APO=∠BQO=90∘,
在Rt△APO和Rt△BQO中,
,
∴Rt△APO≌Rt△BQO,
∴AP=BQ.
(2)∵Rt△APO≌Rt△BQO,
∴∠AOP=∠BOQ,
∴P、O、Q三点共线,
∵在Rt△BOQ中,cosB=,
∴∠B=30∘,∠BOQ= 60° ,
∴OQ=OB=4,
∵∠COD=90°,
∴∠QOD= 90°+ 60° = 150°,
∴优弧QD的长=,
(3)解:设点M为Rt△APO的外心,则M为OA的中点,
∵OA=1,
∴OM=4,
∴当△APO的外心在扇形COD的内部时,OM<OC,
∴OC的取值范围为4<OC<1.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.
2023年浙江省温州市鹿城区绣山中学中考数学三模试卷(含解析): 这是一份2023年浙江省温州市鹿城区绣山中学中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省温州市鹿城区绣山中学中考数学二模试卷(含解析): 这是一份2023年浙江省温州市鹿城区绣山中学中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省温州市鹿城区中考数学二模试卷(含解析): 这是一份2023年浙江省温州市鹿城区中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。