|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届浙江省宁波兴宁中学中考联考数学试题含解析
    立即下载
    加入资料篮
    2022届浙江省宁波兴宁中学中考联考数学试题含解析01
    2022届浙江省宁波兴宁中学中考联考数学试题含解析02
    2022届浙江省宁波兴宁中学中考联考数学试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省宁波兴宁中学中考联考数学试题含解析

    展开
    这是一份2022届浙江省宁波兴宁中学中考联考数学试题含解析,共25页。试卷主要包含了如图,将函数y=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是(  )

    A.∠ADC B.∠ABD C.∠BAC D.∠BAD
    2.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第(  )象限.
    A.一 B.二 C.三 D.四
    3.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

    A.①③ B.②③ C.③④ D.②④
    4.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(  )

    A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
    C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
    5.如图所示图形中,不是正方体的展开图的是(  )
    A. B.
    C. D.
    6.下列图形中,属于中心对称图形的是(  )
    A. B.
    C. D.
    7.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为(  )
    A.0 B.0或﹣2 C.﹣2 D.2
    8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为(  )
    A. B. C. D.
    9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

    A.315° B.270° C.180° D.135°
    10.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
    11.下列四个命题,正确的有(  )个.
    ①有理数与无理数之和是有理数
    ②有理数与无理数之和是无理数
    ③无理数与无理数之和是无理数
    ④无理数与无理数之积是无理数.
    A.1 B.2 C.3 D.4
    12.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.
    14.不等式组的解集是 _____________.
    15.写出一个比大且比小的有理数:______.
    16.如图,点 A 是反比例函数 y=﹣(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.

    17.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    18.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.





    单价(元/米2)



    (1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
    ①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
    ②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
    20.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)

    21.(6分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
    (1)求证:∠BDP=90°.
    (2)若m=4,求BE的长.
    (3)在点P的整个运动过程中.
    ①当AF=3CF时,求出所有符合条件的m的值.
    ②当tan∠DBE=时,直接写出△CDP与△BDP面积比.

    22.(8分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
    23.(8分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
    24.(10分)计算:.
    25.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
    (1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
    (2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

    26.(12分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
    例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.
    (1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;
    (2)对于函数y=x2﹣b2x,
    ①若其反向距离为零,求b的值;
    ②若﹣1≤b≤3,求其反向距离n的取值范围;
    (3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.

    27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    ∵∠ACD对的弧是,对的另一个圆周角是∠ABD,
    ∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),
    又∵AB为直径,
    ∴∠ADB=90°,
    ∴∠ABD+∠BAD=90°,
    即∠ACD+∠BAD=90°,
    ∴与∠ACD互余的角是∠BAD.
    故选D.
    2、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    3、D
    【解析】
    ①错误.由题意a>1.b>1,c<1,abc<1;
    ②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
    ③错误.抛物线与x轴的另一个交点是(1,1);
    ④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    【详解】
    解:∵抛物线开口向上,∴a>1,
    ∵抛物线交y轴于负半轴,∴c<1,
    ∵对称轴在y轴左边,∴- <1,
    ∴b>1,
    ∴abc<1,故①错误.
    ∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
    当ax2+bx+c<mx+n时,-3<x<-1;
    即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
    抛物线与x轴的另一个交点是(1,1),故③错误,
    ∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
    ∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    故选:D.
    【点睛】
    本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    4、D
    【解析】
    ∵函数的图象过点A(1,m),B(4,n),
    ∴m==,n==3,
    ∴A(1,),B(4,3),
    过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
    ∴AC=4﹣1=3,
    ∵曲线段AB扫过的面积为9(图中的阴影部分),
    ∴AC•AA′=3AA′=9,
    ∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
    ∴新图象的函数表达式是.
    故选D.

    5、C
    【解析】
    由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.
    【详解】
    解:A、B、D都是正方体的展开图,故选项错误;
    C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.
    故选C.
    【点睛】
    此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题
    6、B
    【解析】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    【详解】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
    C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    故选B.
    【点睛】
    本题考查了轴对称与中心对称图形的概念:
    中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【解析】
    由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.
    【详解】
    ∵一元二次方程mx1+mx﹣=0有两个相等实数根,
    ∴△=m1﹣4m×(﹣)=m1+1m=0,
    解得:m=0或m=﹣1,
    经检验m=0不合题意,
    则m=﹣1.
    故选C.
    【点睛】
    此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
    8、A
    【解析】
    ∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
    ∴BC== ,
    则cosB== ,
    故选A
    9、B
    【解析】
    利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
    【详解】
    如图,

    ∵∠1、∠2是△CDE的外角,
    ∴∠1=∠4+∠C,∠2=∠3+∠C,
    即∠1+∠2=2∠C+(∠3+∠4),
    ∵∠3+∠4=180°-∠C=90°,
    ∴∠1+∠2=2×90°+90°=270°.
    故选B.
    【点睛】
    此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
    10、C
    【解析】
    分析:
    由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
    详解:
    ∵在中,﹣6<0,
    ∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
    ∵当x=﹣3时,y=2,当x=﹣2时,y=3,
    ∴当﹣3<x<﹣2时,2<y<3,
    故选C.
    点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
    11、A
    【解析】
    解:①有理数与无理数的和一定是有理数,故本小题错误;
    ②有理数与无理数的和一定是无理数,故本小题正确;
    ③例如=0,0是有理数,故本小题错误;
    ④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.
    故选A.
    点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.
    12、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    坡度=坡角的正切值,据此直接解答.
    【详解】
    解:∵,
    ∴坡角=30°.
    【点睛】
    此题主要考查学生对坡度及坡角的理解及掌握.
    14、x<-1
    【解析】

    解不等式①得:x<5,
    解不等式②得:x<-1
    所以不等式组的解集是x<-1.
    故答案是:x<-1.
    15、2
    【解析】
    直接利用接近和的数据得出符合题意的答案.
    【详解】
    解:到之间可以为:2(答案不唯一),
    故答案为:2(答案不唯一).
    【点睛】
    此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.
    16、4﹣π
    【解析】
    由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.
    【详解】
    由题意可以假设A(-m,m),
    则-m2=-4,
    ∴m=≠±2,
    ∴m=2,
    ∴S阴=S正方形-S圆=4-π,
    故答案为4-π.
    【点睛】
    本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题
    17、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
    18、11.
    【解析】
    试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,
    ∴这7天中最大的日温差是11℃.
    考点:1.有理数大小比较;2.有理数的减法.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)8m2;(2)68m2;(3) 40,8
    【解析】
    (1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
    (2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
    (3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
    【详解】
    (1) ∵为长方形和菱形的对称中心,,∴
    ∵,,∴
    ∴当时,,
    (2)∵,
    ∴-,
    ∵,,
    ∴解不等式组得,
    ∵,结合图像,当时,随的增大而减小.
    ∴当时, 取得最大值为
    (3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
    【点睛】
    本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
    20、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
    【解析】
    (1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
    (2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    (1 )由题意可得:cos∠FHE=,则∠FHE=60°;
    (2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,

    在 Rt△ABC 中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
    ∴sin60°==,
    ∴FG≈2.17(m),
    ∴FM=FG+GM≈4.4(米),
    答:篮板顶端 F 到地面的距离是 4.4 米.
    【点睛】
    本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
    21、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
    【解析】
    由知,再由知、,据此可得,证≌即可得;
    易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
    分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
    【详解】
    如图1,




    、,


    ≌,

    ,,



    四边形ABEF是矩形,
    设,则,




    ≌,

    ≌,

    在中,,即,
    解得:,
    的长为1.
    如图1,当点C在AF的左侧时,
    ,则,

    ,,
    在中,由可得,
    解得:负值舍去;
    如图2,当点C在AF的右侧时,




    ,,
    在中,由可得,
    解得:负值舍去;
    综上,m的值为或;
    如图3,过点D作于点G,延长GD交BE于点H,

    ≌,

    又,且,

    当点D在矩形ABEF的内部时,
    由可设、,
    则,

    则;
    如图4,当点D在矩形ABEF的外部时,

    由可设、,
    则,

    则,
    综上,与面积比为或.
    【点睛】
    本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
    22、(1)证明:∵ABCD是平行四边形
    ∴AB=CD
    AB∥CD
    ∴∠ABE=∠CDF
    又∵AE⊥BD,CF⊥BD
    ∴∠AEB=∠CFD=
    ∴△ABE≌△CDF
    ∴BE=DF
    【解析】
    证明:在□ABCD中
    ∵AB∥CD
    ∴∠ABE=∠CDF…………………………………………………………4分
    ∵AE⊥BD CF⊥BD
    ∴∠AEB=∠CFD=900……………………………………………………5分
    ∵AB=CD
    ∴△ABE≌△CDF…………………………………………………………6分
    ∴BE=DF
    23、人
    【解析】
    解:设原计划有x人参加了这次植树活动
    依题意得:
    解得 x=30人
    经检验x=30是原方程式的根
    实际参加了这次植树活动1.5x=45人
    答实际有45人参加了这次植树活动.
    24、
    【解析】
    【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
    【详解】原式=
    =
    =.
    【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
    25、(1) (2)证明见解析
    【解析】
    (1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
    (2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
    【详解】
    解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
    在 Rt△ABE 中,∵OB=OE,
    ∴BE=2OA=2,
    ∵MB=ME,
    ∴∠MBE=∠MEB=15°,
    ∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
    ∵AB2+AE2=BE2,
    ∴,
    ∴x= (负根已经舍弃),
    ∴AB=AC=(2+ )• ,
    ∴BC= AB= +1.
    作 CQ⊥AC,交 AF 的延长线于 Q,

    ∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
    ∴△ABE≌△ACD(SAS),
    ∴∠ABE=∠ACD,
    ∵∠BAC=90°,FG⊥CD,
    ∴∠AEB=∠CMF,
    ∴∠GEM=∠GME,
    ∴EG=MG,
    ∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
    ∴△ABE≌△CAQ(ASA),
    ∴BE=AQ,∠AEB=∠Q,
    ∴∠CMF=∠Q,
    ∵∠MCF=∠QCF=45°,CF=CF,
    ∴△CMF≌△CQF(AAS),
    ∴FM=FQ,
    ∴BE=AQ=AF+FQ=AF=FM,
    ∵EG=MG,
    ∴BG=BE+EG=AF+FM+MG=AF+FG.
    【点睛】
    本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    26、(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.
    【解析】
    (1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
    (2)①根据题意可以求得相应的b的值;
    ②根据题意和b的取值范围可以求得相应的n的取值范围;
    (3)根据题目中的函数解析式和题意可以解答本题.
    【详解】
    (1)由题意可得,
    当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
    当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,
    当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
    (2)①令﹣m=m2﹣b2m,
    解得,m=0或m=b2﹣1,
    ∵反向距离为零,
    ∴|b2﹣1﹣0|=0,
    解得,b=±1;
    ②令﹣m=m2﹣b2m,
    解得,m=0或m=b2﹣1,
    ∴n=|b2﹣1﹣0|=|b2﹣1|,
    ∵﹣1≤b≤3,
    ∴0≤n≤8;
    (3)∵y=,
    ∴当x≥m时,
    ﹣m=m2﹣3m,得m=0或m=2,
    ∴n=2﹣0=2,
    ∴m>2或m≤﹣2;
    当x<m时,
    ﹣m=﹣m2﹣3m,
    解得,m=0或m=﹣2,
    ∴n=0﹣(﹣2)=2,
    ∴﹣2<m≤2,
    由上可得,当m>2或m≤﹣2时,n=2,
    当﹣2<m≤2时,n=2.
    【点睛】
    本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
    27、 (1) ;(2)此校车在AB路段超速,理由见解析.
    【解析】
    (1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.
    【详解】
    解:(1)由题意得,在Rt△ADC中,tan30°==,
    解得AD=24.
    在 Rt△BDC 中,tan60°==,
    解得BD=8
    所以AB=AD﹣BD=24﹣8=16(米).
    (2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),
    因为18.1(米/秒)=65.2千米/时>45千米/时,
    所以此校车在AB路段超速.
    【点睛】
    考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.

    相关试卷

    2023年浙江省宁波市海曙区兴宁中学中考数学三模试卷(含解析): 这是一份2023年浙江省宁波市海曙区兴宁中学中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省宁波市兴宁中学中考三模数学试题(含答案): 这是一份2023年浙江省宁波市兴宁中学中考三模数学试题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省宁波市兴宁中学中考一模数学试题: 这是一份2023年浙江省宁波市兴宁中学中考一模数学试题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map