|试卷下载
搜索
    上传资料 赚现金
    2022届四川省绵阳市三台县中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022届四川省绵阳市三台县中考冲刺卷数学试题含解析01
    2022届四川省绵阳市三台县中考冲刺卷数学试题含解析02
    2022届四川省绵阳市三台县中考冲刺卷数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省绵阳市三台县中考冲刺卷数学试题含解析

    展开
    这是一份2022届四川省绵阳市三台县中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(    )
    A.9分 B.8分 C.7分 D.6分
    2.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
    A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
    C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
    3.下列命题中,真命题是(  )
    A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离
    B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切
    C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切
    D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离
    4.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )

    A.3:1 B.4:1 C.5:2 D.7:2
    5.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
    A.相离 B.相切 C.相交 D.不确定
    6.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了(  )
    A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%
    7.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为(  )

    A. B. C. D.4﹣
    8.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是( )
    A.> B.= C.< D.不能确定
    9.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:
    ①当G1与G2有公共点时,y1随x增大而减小;
    ②当G1与G2没有公共点时,y1随x增大而增大;
    ③当k=2时,G1与G2平行,且平行线之间的距离为.
    下列选项中,描述准确的是(  )
    A.①②正确,③错误 B.①③正确,②错误
    C.②③正确,①错误 D.①②③都正确
    10.x=1是关于x的方程2x﹣a=0的解,则a的值是(  )
    A.﹣2 B.2 C.﹣1 D.1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=1.则k=_______.

    12.因式分解=______.
    13.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.

    14.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.

    15.在中,若,则的度数是______.
    16.分解因式:___.
    三、解答题(共8题,共72分)
    17.(8分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示.

    (1)图中的线段l1是 (填“甲”或“乙”)的函数图象,C地在B地的正北方向 千米处;
    (2)谁先到达C地?并求出甲乙两人到达C地的时间差;
    (3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度.
    18.(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
    19.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.

    20.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.

    21.(8分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
    (1)求抛物线C1的表达式;
    (2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
    (3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.

    22.(10分)()如图①已知四边形中,,BC=b,,求:
    ①对角线长度的最大值;
    ②四边形的最大面积;(用含,的代数式表示)
    ()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)

    23.(12分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP⊥BC,交 OB 于点 P,连接 MP.

    (1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;
    (2)记△OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值.
    24.如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
    详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
    故答案为:C.
    点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    2、A
    【解析】
    试题分析:0.001219=1.219×10﹣1.故选A.
    考点:科学记数法—表示较小的数.
    3、D
    【解析】
    根据两圆的位置关系、直线和圆的位置关系判断即可.
    【详解】
    A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;
    B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;
    C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;
    D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;
    故选:D.
    【点睛】
    本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.
    4、A
    【解析】
    利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
    【详解】
    连接DO,交AB于点F,

    ∵D是的中点,
    ∴DO⊥AB,AF=BF,
    ∵AB=8,
    ∴AF=BF=4,
    ∴FO是△ABC的中位线,AC∥DO,
    ∵BC为直径,AB=8,AC=6,
    ∴BC=10,FO=AC=1,
    ∴DO=5,
    ∴DF=5-1=2,
    ∵AC∥DO,
    ∴△DEF∽△CEA,
    ∴,
    ∴==1.
    故选:A.
    【点睛】
    此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
    5、A
    【解析】
    根据角平分线的性质和点与直线的位置关系解答即可.
    【详解】
    解:如图所示;

    ∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
    ∴以点P为圆心的圆与直线CD相离,
    故选:A.
    【点睛】
    此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
    6、D
    【解析】
    设第一季度的原产值为a,则第二季度的产值为 ,第三季度的产值为 ,则则第三季度的产值比第一季度的产值增长了
    故选D.
    7、D
    【解析】
    首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE是∠DEB的平分线,
    ∴∠BEA=∠AED,
    ∴∠DAE=∠AED,
    ∴DE=AD=4,
    再Rt△DEC中,EC===,
    ∴BE=BC-EC=4-.
    故答案选D.
    【点睛】
    本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.
    8、C
    【解析】
    试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
    考点:反比例函数的性质.
    9、D
    【解析】
    画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.
    【详解】
    解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,

    N(﹣1,2),Q(2,7)为G2的两个临界点,
    易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),
    直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;
    当G1与G2没有公共点时,分三种情况:
    一是直线MN,但此时k=0,不符合要求;
    二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;
    三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;
    当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM=2,
    ∴PM=2PN,
    由勾股定理得:PN2+PM2=MN2
    ∴(2PN)2+(PN)2=9,
    ∴PN=,
    ∴PM=.
    故③正确.
    综上,故选:D.
    【点睛】
    本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.
    10、B
    【解析】
    试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
    故选B.
    考点:一元一次方程的解.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.
    则AD∥BE,AD=2BE=,
    ∴B、E分别是AC、DC的中点.
    ∴△ADC∽△BEC,
    ∵BE:AD=1:2,
    ∴EC:CD=1:2,
    ∴EC=DE=a,
    ∴OC=3a,
    又∵A(a, ),B(2a, ),
    ∴S△AOC=AD×CO=×3a× ==1,
    解得:k=2.
    12、.
    【解析】
    解:==,故答案为:.
    13、
    【解析】
    利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
    【详解】
    ∵AE=EC,BD=CD,
    ∴DE∥AB,DE=AB,
    ∴△EDC∽△ABC,
    ∴=,
    故答案是:.
    【点睛】
    考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
    14、
    【解析】
    设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.
    【详解】
    解:如图,

    由折叠可得,∠AFE=∠A'FE,
    ∵A'F∥AB,
    ∴∠AEF=∠A'FE,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    由折叠可得,AF=A'F,
    设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,
    ∵A'F∥AB,
    ∴△A'CF∽△BCA,
    ∴,即=,
    解得x=,
    ∴BE=,
    故答案为:.
    【点睛】
    本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
    15、
    【解析】
    先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.
    【详解】
    在中,,
    ,,
    ,,

    故答案为:.
    【点睛】
    本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.
    16、
    【解析】
    先提取公因式,再利用平方差公式分解因式即可.
    【详解】

    故答案为:.
    【点睛】
    本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)乙;3;(2)甲先到达,到达目的地的时间差为小时;(3)速度慢的人提速后的速度为千米/小时.
    【解析】
    分析:
    (1)根据题意结合所给函数图象进行判断即可;
    (2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;
    (3)根据图象中的信息结合(2)中的结论进行解答即可.
    详解:
    (1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处.
    (2)甲先到达.
    设甲的函数解析式为s=kt,则有4=t,
    ∴s=4t.
    ∴当s=6时,t=.
    设乙的函数解析式为s=nt+3,则有4=n+3,即n=1.
    ∴乙的函数解析式为s=t+3.
    ∴当s=6时,t=3.
    ∴甲、乙到达目的地的时间差为:(小时).
    (3)设提速后乙的速度为v千米/小时,
    ∵相遇处距离A地4千米,而C地距A地6千米,
    ∴相遇后需行2千米.
    又∵原来相遇后乙行2小时才到达C地,
    ∴乙提速后2千米应用时1.5小时.
    即,解得: ,
    答:速度慢的人提速后的速度为千米/小时.
    点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.
    18、(1)见解析;(2)4.1
    【解析】
    试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
    (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
    试题解析:(1)∵四边形ABCD是正方形,
    ∴AB=AD,∠B=10°,AD∥BC,
    ∴∠AMB=∠EAF,
    又∵EF⊥AM,
    ∴∠AFE=10°,
    ∴∠B=∠AFE,
    ∴△ABM∽△EFA;
    (2)∵∠B=10°,AB=12,BM=5,
    ∴AM==13,AD=12,
    ∵F是AM的中点,
    ∴AF=AM=6.5,
    ∵△ABM∽△EFA,
    ∴,
    即,
    ∴AE=16.1,
    ∴DE=AE-AD=4.1.
    考点:1.相似三角形的判定与性质;2.正方形的性质.
    19、(1)点B的坐标是(-5,-4);直线AB的解析式为:
    (2)四边形CBED是菱形.理由见解析
    【解析】
    (1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
    (2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
    【详解】
    解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
    得. ∴点B的坐标是(-5,-4)
    设直线AB的解析式为,
    将 A(3,)、B(-5,-4)代入得,
    , 解得:.
    ∴直线AB的解析式为:
    (2)四边形CBED是菱形.理由如下:
    点D的坐标是(3,0),点C的坐标是(-2,0).
    ∵ BE∥轴, ∴点E的坐标是(0,-4).
    而CD =5, BE=5,且BE∥CD.
    ∴四边形CBED是平行四边形
    在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
    ∴□CBED是菱形
    20、∠CMA =35°.
    【解析】
    根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
    【详解】
    ∵AB∥CD,∴∠ACD+∠CAB=180°.
    又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
    又∵AB∥CD,∴∠CMA=∠BAM=35°.
    【点睛】
    本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
    21、(1)y;(2);(3)E(,0).
    【解析】
    (1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
    (2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
    (3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
    【详解】
    解:(1)∵抛物线C1的顶点为,
    ∴可设抛物线C1的表达式为y,
    将B(﹣1,0)代入抛物线解析式得:,
    ∴,
    解得:a,
    ∴抛物线C1的表达式为y,即y.
    (2)设抛物线C2的顶点坐标为
    ∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称


    ∴抛物线C2的顶点坐标为()
    可设抛物线C2的表达式为y
    ∵抛物线C2开口朝下,且形状不变

    ∴抛物线C2的表达式为y,即.
    (3)如图,作GK⊥x轴于G,DH⊥AB于H.

    由题意GK=DH=3,AH=HB=EK=KF,
    ∵四边形AGFD是矩形,
    ∴∠AGF=∠GKF=90°,
    ∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
    ∴∠AGK=∠GFK.
    ∵∠AKG=∠FKG=90°,
    ∴△AGK∽△GFK,
    ∴,
    ∴,
    ∴AK=6,

    ∴BE=BK﹣EK=3,
    ∴OE,
    ∴E(,0).
    【点睛】
    本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
    22、(1)①;②;(2)150+475+475.
    【解析】
    (1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;
    (2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
    △ACD′的面积即可.
    【详解】
    (1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,
    ②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=AD×CD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;
    (2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=AB×sin60°=10,EB=AB×cos60°=10,S△ABC=AE×BC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,

    当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D’,交AC于F,FD’即为所求最大值,连接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=AC×D’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.
    【点睛】
    本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
    23、(1),;(2),1,1.
    【解析】
    (1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;
    (2)由题意可得,由(1)可得点的坐标为, 表达出△OMP的面积即可,利用二次函数的性质求出最大值.
    【详解】
    解:(1)∵OA=6,OC=4, 四边形OABC为矩形,
    ∴AB=OC=4,
    ∴点B,
    设直线OB解析式为,将B代入得,解得,
    ∴,
    故答案为:;
    (2)由题可知,,

    由(1)可知,点的坐标为




    ∴当时,有最大值1.
    【点睛】
    本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.
    24、
    【解析】
    根据列表法先画出列表,再求概率.
    【详解】
    解:列表如下:

    2
    3
    5
    6
    2

    (2,3)
    (2,5)
    (2,6)
    3
    (3,2)

    (3,5)
    (3,6)
    5
    (5,2)
    (5,3)

    (5,6)
    6
    (6,2)
    (6,3)
    (6,5)

    由表可知共有12种等可能结果,其中数字之和为偶数的有4种,
    所以P(数字之和都是偶数).
    【点睛】
    此题重点考查学生对概率的应用,掌握列表法是解题的关键.

    相关试卷

    2023年四川省绵阳市三台县中考数学模拟试卷(三)(含解析): 这是一份2023年四川省绵阳市三台县中考数学模拟试卷(三)(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省绵阳市三台县中考二模数学试题(含解析): 这是一份2023年四川省绵阳市三台县中考二模数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省绵阳市三台县中考数学模拟试卷(二)(含解析): 这是一份2023年四川省绵阳市三台县中考数学模拟试卷(二)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map