2021-2022学年四川省绵阳市三台外国语校中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
2.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
3.如果,那么的值为( )
A.1 B.2 C. D.
4.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )
A.26°. B.44°. C.46°. D.72°
5.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )
A. B.
C. D.
6.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).
A.两人从起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
C.小苏前跑过的路程大于小林前跑过的路程
D.小林在跑最后的过程中,与小苏相遇2次
7.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为( )
A.或2 B.或2 C.2或2 D.2或2
8.计算(-18)÷9的值是( )
A.-9 B.-27 C.-2 D.2
9.如图图形中是中心对称图形的是( )
A. B.
C. D.
10.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
11.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1 B.x=1 C.x≠0 D.x≠1
12.下列各数中是无理数的是( )
A.cos60° B. C.半径为1cm的圆周长 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).
15.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.
16.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
17.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:
分数(单位:分)
100
90
80
70
60
人数
1
4
2
1
2
则这10名学生的数学成绩的中位数是_____分.
18.分解因式:x3﹣2x2+x=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
20.(6分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点.
求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.
①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.
21.(6分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
22.(8分)先化简,,其中x=.
23.(8分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
24.(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.
(1)求购进甲、乙两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7
(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?
25.(10分)计算:|﹣2|++(2017﹣π)0﹣4cos45°
26.(12分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
27.(12分)某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品. C班提供的
参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统
计图中 .
(1)B班参赛作品有多少件?
(2)请你将图②的统计图补充完整;
(3)通过计算说明,哪个班的获奖率高?
(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
2、D
【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
详解:将数据重新排列为17、18、18、20、20、20、23,
所以这组数据的众数为20分、中位数为20分,
故选:D.
点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
3、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
4、A
【解析】
先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
【详解】
解:∵图中是正五边形.
∴∠EAB=108°.
∵太阳光线互相平行,∠ABG=46°,
∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
故选A.
【点睛】
此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
5、D
【解析】
分a>0和a<0两种情况分类讨论即可确定正确的选项
【详解】
当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,
当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;
故选D.
【点睛】
本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.
6、D
【解析】
A.由图可看出小林先到终点,A错误;
B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;
C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;
D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.
故选D.
7、C
【解析】
过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.
【详解】
过B作直径,连接AC交AO于E,
∵点B为的中点,
∴BD⊥AC,
如图①,
∵点D恰在该圆直径上,D为OB的中点,
∴BD=×4=2,
∴OD=OB-BD=2,
∵四边形ABCD是菱形,
∴DE=BD=1,
∴OE=1+2=3,
连接OC,
∵CE=,
在Rt△DEC中,由勾股定理得:DC=;
如图②,
OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,
由勾股定理得:CE=,
DC=.
故选C.
【点睛】
本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.
8、C
【解析】
直接利用有理数的除法运算法则计算得出答案.
【详解】
解:(-18)÷9=-1.
故选:C.
【点睛】
此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.
9、B
【解析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.
【点睛】
本题考察了中心对称图形的含义.
10、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
11、D
【解析】
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
12、C
【解析】
分析:根据“无理数”的定义进行判断即可.
详解:
A选项中,因为,所以A选项中的数是有理数,不能选A;
B选项中,因为是无限循环小数,属于有理数,所以不能选B;
C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
D选项中,因为,2是有理数,所以不能选D.
故选.C.
点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、k≥,且k≠1
【解析】
试题解析:∵a=k,b=2(k+1),c=k-1,
∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,
解得:k≥-,
∵原方程是一元二次方程,
∴k≠1.
考点:根的判别式.
14、③④⑤
【解析】
根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.
【详解】
解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①错误,
当x=-1时,y=a-b+c<0,得b>a+c,故②错误,
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,
∴x=2时的函数值与x=0的函数值相等,
∴x=2时,y=4a+2b+c>0,故③正确,
∵x=-1时,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正确,
由图象可知,x=1时,y取得最大值,此时y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正确,
故答案为:③④⑤.
【点睛】
本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
15、2
【解析】
设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
【详解】
设EF=x,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.
16、
【解析】
解:根据题意可得:列表如下
红1
红2
黄1
黄2
黄3
红1
红1,红2
红1,黄1
红1,黄2
红1,黄3
红2
红2,红1
红2,黄1
红2,黄2
红2,黄3
黄1
黄1,红1
黄1,红2
黄1,黄2
黄1,黄3
黄2
黄2,红1
黄2,红2
黄2,黄1
黄2,黄3
黄3
黄3,红1
黄3,红2
黄3,黄1
黄3,黄2
共有20种所有等可能的结果,其中两个颜色相同的有8种情况,
故摸出两个颜色相同的小球的概率为.
【点睛】
本题考查列表法和树状图法,掌握步骤正确列表是解题关键.
17、1
【解析】
根据中位数的概念求解即可.
【详解】
这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100,
则中位数为:=1.
故答案为:1.
【点睛】
本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
18、x(x-1)2.
【解析】
由题意得,x3﹣2x2+x= x(x﹣1)2
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
20、(1),;(2)① 3,② .
【解析】
(1)将代入可求出a,将A点坐标代入可求出k;
(2)①根据题意画出函数图像,可直接写出区域内的整点个数;
②求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.
【详解】
解:(1)将代入得a=4
将代入,得
(2)①区域内的整点个数是3
②∵直线是过点且平行于直线
∴直线的表达式为
当时,即线段PM上有整点
∴
【点睛】
本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.
21、(1)50人;(2)补图见解析;(3).
【解析】
分析:(1)根据化学学科人数及其所占百分比可得总人数;
(2)根据各学科人数之和等于总人数求得历史的人数即可;
(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
详解:(1)该班学生总数为10÷20%=50人;
(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
补全图形如下:
(3)列表如下:
化学
生物
政治
历史
地理
化学
生物、化学
政治、化学
历史、化学
地理、化学
生物
化学、生物
政治、生物
历史、生物
地理、生物
政治
化学、政治
生物、政治
历史、政治
地理、政治
历史
化学、历史
生物、历史
政治、历史
地理、历史
地理
化学、地理
生物、地理
政治、地理
历史、地理
由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
所以该同学恰好选中化学、历史两科的概率为.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
22、
【解析】
根据分式的化简方法先通分再约分,然后带入求值.
【详解】
解:
当时,.
【点睛】
此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.
23、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
【解析】
分析:(1)根据点(4,1)在()的图象上,即可求出的值;
(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
详解:(1)解:∵点(4,1)在()的图象上.
∴,
∴.
(2)① 3个.(1,0),(2,0),(3,0).
② .当直线过(4,0)时:,解得
.当直线过(5,0)时:,解得
.当直线过(1,2)时:,解得
.当直线过(1,3)时:,解得
∴综上所述:或.
点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
24、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.
【解析】
分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;
(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;
(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.
详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.
由题意得:,
解得:
答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.
(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:
100a+50(80﹣a)≤7100
解得a≤1
又a≥60
所以a可取60、61、1.
即有三种进货方案.
方案一:甲种纪念品60件,乙种纪念品20件;
方案二:甲种纪念品61件,乙种纪念品19件;
方案三:甲种纪念品1件,乙种纪念品18件.
(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400
所以W是a的一次函数,﹣10<0,W随a的增大而减小.
所以当a最小时,W最大.此时W=﹣10×60+2400=1800
答:若全部销售完,方案一获利最大,最大利润是1800元.
点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.
25、1.
【解析】
直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.
【详解】
解:原式=2+2+1﹣4×
=2+2+1﹣2
=1.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
26、(1)详见解析;(2)详见解析
【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴CD=BD,
∴D是BC的中点;
(2)若AB=AC,则四边形AFBD是矩形.理由如下:
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四边形AFBD是矩形.
【点睛】
本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
27、(1)25件;(2)见解析;(3)B班的获奖率高;(4).
【解析】
试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;
(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;
(3)分别求出各班的获奖百分率,进而求出答案;
(4)利用树状统计图得出所有符合题意的答案进而求出其概率.
试题解析:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),
答:B班参赛作品有25件;
(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),
如图所示:
;
(3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,
C班的获奖率为:=50%;D班的获奖率为:×100%=40%,
故C班的获奖率高;
(4)如图所示:
,
故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=.
考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.
江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,定义运算“※”为,《语文课程标准》规定等内容,欢迎下载使用。
广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
2022届四川省绵阳市南山中学中考数学考试模拟冲刺卷含解析: 这是一份2022届四川省绵阳市南山中学中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集在数轴上可表示为,下列运算正确的是等内容,欢迎下载使用。