2022届上海市普陀区名校中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】
A.在同一条直线上 B.在同一条抛物线上
C.在同一反比例函数图象上 D.是同一个正方形的四个顶点
2.实数4的倒数是( )
A.4 B. C.﹣4 D.﹣
3.计算3–(–9)的结果是( )
A.12 B.–12 C.6 D.–6
4.观察下列图案,是轴对称而不是中心对称的是( )
A. B. C. D.
5.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于( )
A.19° B.38° C.42° D.52°
6.下列代数运算正确的是( )
A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x5
7.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )
A.4 B.3+ C.3 D.
8.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足( )
A.a= B.a=2b C.a=b D.a=3b
9.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是( )
A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外
C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外
10.下列运算正确的是( )
A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .
12.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.
13.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.
14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为 ________.
15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.
16.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .
17.关于x的不等式组的整数解有4个,那么a的取值范围( )
A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤4
三、解答题(共7小题,满分69分)
18.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
19.(5分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.
20.(8分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
21.(10分)计算:-2-2 - + 0
22.(10分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.
(1)求证:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.
23.(12分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.
(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;
(II)如图②,当α=60°时,求点C′的坐标;
(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).
24.(14分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A。
【解析】∵对于点A(x1,y1),B(x2,y2),,
∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
那么,
。
又∵,
∴。
∴。
令,
则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,
∴互不重合的四点C,D,E,F在同一条直线上。故选A。
2、B
【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
【详解】
解:实数4的倒数是:
1÷4=.
故选:B.
【点睛】
此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
3、A
【解析】
根据有理数的减法,即可解答.
【详解】
故选A.
【点睛】
本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
反数.
4、A
【解析】
试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:
A、是轴对称图形,不是中心对称图形,故本选项符合题意;
B、不是轴对称图形,是中心对称图形,故本选项不符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选A.
点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.
5、D
【解析】
试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.
考点:平行线的性质;余角和补角.
6、D
【解析】
分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.
【详解】
解:A. (x+1)2=x2+2x+1,故A错误;
B. (x3)2=x6,故B错误;
C. (2x)2=4x2,故C错误.
D. x3•x2=x5,故D正确.
故本题选D.
【点睛】
本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.
7、B
【解析】
试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,
∵⊙P的圆心坐标是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D点坐标为(3,3),
∴CD=3,
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形,
∵PE⊥AB,
∴AE=BE=AB=×4=2,
在Rt△PBE中,PB=3,
∴PE=,
∴PD=PE=,
∴a=3+.
故选B.
考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.
8、B
【解析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.
【详解】
由图形可知,
S2=(a-b)2+b(a+b)+ab=a2+2b2,
S1=(a+b)2-S2=2ab-b2,
∵S2=2S1,
∴a2+2b2=2(2ab﹣b2),
∴a2﹣4ab+4b2=0,
即(a﹣2b)2=0,
∴a=2b,
故选B.
【点睛】
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
9、D
【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.
【详解】
由题意可求出∠A=30°,AB=2BC=4, 由勾股定理得AC==2,
AB=4>3, AC=2>3,点B、点C都在⊙A外.
故答案选D.
【点睛】
本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.
10、B
【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
【详解】
A、a3+a3=2a3,故A错误;
B、a6÷a2=a4,故B正确;
C、a3•a5=a8,故C错误;
D、(a3)4=a12,故D错误.
故选:B.
【点睛】
此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、2.
【解析】
先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
【详解】
由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
∵线段OA的垂直平分线交OC于点B,∴OB=AB.
则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
∴△ABC周长的值是2.
12、-1
【解析】
试题分析:根据非负数的性质可得:,解得:,则ab+bc=(-11)×6+6×5=-66+30=-1.
13、2.1或2
【解析】
在Rt△ACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根据勾股定理可求QP,继而可求得答案.
【详解】
如图所示:
在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折叠的性质可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中点,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①当点P在DE右侧时,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
则BP=2.1.
②当点P在DE左侧时,同①知,BP=2
故答案为:2.1或2.
【点睛】
考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.
14、1
【解析】
如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.
【详解】
在Rt△ABC中,由勾股定理.得
AB==10,
∵DE⊥AB,
∴∠AED=∠C=90°.
∵∠A=∠A,
∴△AED∽△ACB,
∴,
∴,
∴AD=1.
故答案为1
【点睛】
本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.
15、
【解析】
判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.
【详解】
解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,
故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.
故答案为.
【点睛】
考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.
16、.
【解析】
待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.
【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:
∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.
设正方形的边长为b,则b2=9,解得b=3.
∵正方形的中心在原点O,∴直线AB的解析式为:x=2.
∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).
∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.
∴此反比例函数的解析式为:.
17、C
【解析】
分析:先根据一元一次不等式组解出x的取值,再根据不等式组
的整数解有4个,求出实数a的取值范围.
详解:
解不等式①,得
解不等式②,得
原不等式组的解集为
∵只有4个整数解,
∴整数解为:
故选C.
点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.
三、解答题(共7小题,满分69分)
18、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
【解析】
(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
【详解】
解:(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.
答:购进A种树苗1棵,B种树苗2棵.
(2)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
12﹣x<x,解得:x>8.3.
∵购进A、B两种树苗所需费用为80x+60(12﹣x)=20x+120,是x的增函数,
∴费用最省需x取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.
19、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
20、(1)证明见解析;(2)
【解析】
试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
试题解析:(1)∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.
(2)作DF⊥AB于F,连接OE,∵DB=DE, ∴EF=BE=3,在 RT△DEF中,EF=3,DE=BD=5,EF=3 , ∴DF=∴sin∠DEF== , ∵∠AOE=∠DEF, ∴在RT△AOE中,sin∠AOE= ,
∵AE=6, ∴AO=.
【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
21、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
【详解】
解:原式=
【点睛】
本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
22、(1)详见解析;(2)OA=.
【解析】
(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
【详解】
(1)证明:连接OB,
∵BE为⊙O的切线,
∴OB⊥BE,
∴∠OBE=90°,
∴∠ABE+∠OBA=90°,
∵OA=OB,
∴∠OBA=∠OAB,
∴∠ABE+∠OAB=90°,
∵AD是⊙O的直径,
∴∠OAB+∠ADB=90°,
∴∠ABE=∠ADB,
∵四边形ABCD的外接圆为⊙O,
∴∠EAB=∠C,
∵∠E=∠DBC,
∴∠ABE=∠BDC,
∴∠ADB=∠BDC,
即DB平分∠ADC;
(2)解:∵tan∠ABE=,
∴设AB=x,则BD=2x,
∴,
∵∠BAE=∠C,∠ABE=∠BDC,
∴△AEB∽△CBD,
∴,
∴,
解得x=3,
∴AB=x=15,
∴OA=.
【点睛】
本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.
23、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②
C′(,﹣)
【解析】
(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;
(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;
(III)分两种情形分别求解即可解决问题;
【详解】
解:(I)如图①,
∵A(8,0),B(0,4),
∴OB=4,OA=8,
∵AC=OC=AC′=4,
∴当OB∥AC′,四边形OBC′A是平行四边形,
∵∠AOB=90°,
∴四边形OBC′A是矩形,
∴∠AC′B=90°,∵∠AC′D′=90°,
∴B、C′、D′共线,
∴BD′∥OA,
∵AC=CO, BD=AD,
∴CD=C′D′=OB=2,
∴D′(10,4),
根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.
综上所述,满足条件的点D坐标(10,4)或(6,4).
(II)如图②,当α=60°时,作C′K⊥AC于K.
在Rt△AC′K中,∵∠KAC′=60°,AC′=4,
∴AK=2,C′K=2,
∴OK=6,
∴C′(6,2).
(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).
②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,
∴OF=FC′,设OF=FC′=x,
在Rt△ABC′中,BC′==8,
在RT△BOF中,OB=4,OF=x,BF=8﹣x,
∴(8﹣x)2=42+x2,
解得x=3,
∴OF=FC′=3,BF=5,作C′K⊥OA于K,
∵OB∥KC′,
∴==,
∴==,
∴KC′=,KF=,
∴OK=,
∴C′(,﹣).
【点睛】
本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
24、(1)①30°②见解析(2)BD2+CE2=DE2(3)
【解析】
(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;
(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;
(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.
【详解】
解:(1)①由旋转得,∠FAB=∠CAE,
∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,
∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;
②由旋转知,AF=AE,∠BAF=∠CAE,
∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,
在△ADE和△ADF中,,
∴△ADE≌△ADF(SAS);
(2)BD2+CE2=DE2,
理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
∴BF=CE,∠ABF=∠ACB,
由(1)知,△ADE≌△ADF,
∴DE=DF,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,
根据勾股定理得,BD2+BF2=DF2,
即:BD2+CE2=DE2;
(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
∴BF=CE,∠ABF=∠ACB,
由(1)知,△ADE≌△ADF,
∴DE=DF,BF=CE=5,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=30°,
∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,
过点F作FM⊥BC于M,
在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,
BF=5,
∴,
∵BD=4,
∴DM=BD﹣BM=,
根据勾股定理得, ,
∴DE=DF=,
故答案为.
【点睛】
此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.
昌都市市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份昌都市市级名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,-的立方根是等内容,欢迎下载使用。
2022年上海市杨浦区名校中考数学押题卷含解析: 这是一份2022年上海市杨浦区名校中考数学押题卷含解析,共17页。试卷主要包含了已知抛物线y=ax2﹣等内容,欢迎下载使用。
2021-2022学年深圳龙文重点名校中考押题数学预测卷含解析: 这是一份2021-2022学年深圳龙文重点名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,函数y=自变量x的取值范围是,﹣的绝对值是等内容,欢迎下载使用。