|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析01
    2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析02
    2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析

    展开
    这是一份2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析,共20页。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.不等式3x<2(x+2)的解是(  )
    A.x>2 B.x<2 C.x>4 D.x<4
    2.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )
    A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010
    3.下列图案是轴对称图形的是(  )
    A. B. C. D.
    4.观察下列图形,其中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    5.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    6.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是(  )

    A. B. C. D.
    7.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )

    A.3cm B. cm C.2.5cm D. cm
    8.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )

    A.40° B.60° C.80° D.100°
    9.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
    A. B. C. D.
    10.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是______.

    12.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.

    13.﹣的绝对值是_____.
    14.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.

    15.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
    16.观察以下一列数:3,,,,,…则第20个数是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
    (1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若 PA=3,PC=4,则 PB= .
    (2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
    ①求∠CPD 的度数;
    ②求证:P 点为△ABC 的费马点.

    18.(8分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.

    (1)求证:;
    (2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
    (3)如果与相似,求BP的长.
    19.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
    处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
    (≈1.73).
    20.(8分)阅读材料:各类方程的解法
    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

    21.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
    (1)A、B两点之间的距离是   米,甲机器人前2分钟的速度为   米/分;
    (2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
    (3)若线段FG∥x轴,则此段时间,甲机器人的速度为   米/分;
    (4)求A、C两点之间的距离;
    (5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.

    22.(10分)如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.求证:DE=CE. 若∠CDE=35°,求∠A 的度数.

    23.(12分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
    24.嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
    (1)求被覆盖的这个数是多少?
    (2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    不等式先展开再移项即可解答.
    【详解】
    解:不等式3x<2(x+2),
    展开得:3x<2x+4,
    移项得:3x-2x<4,
    解之得:x<4.
    故答案选D.
    【点睛】
    本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1800000000=1.8×109,
    故选:C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、C
    【解析】
    解:A.此图形不是轴对称图形,不合题意;
    B.此图形不是轴对称图形,不合题意;
    C.此图形是轴对称图形,符合题意;
    D.此图形不是轴对称图形,不合题意.
    故选C.
    4、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;
    B、是轴对称图形,不是中心对称图形.故本选项错误;
    C、是轴对称图形,也是中心对称图形.故本选项正确;
    D、既不是轴对称图形,也不是中心对称图形.故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    6、C
    【解析】
    过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
    【详解】
    如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
    【点睛】
    本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
    7、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,

    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    8、D
    【解析】
    根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵l1∥l2,
    ∴∠3=∠1=60°,
    ∴∠2=∠A+∠3=40°+60°=100°.
    故选D.

    【点睛】
    本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
    9、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得出答案.
    【详解】
    A.不是轴对称图形,故本选项错误;
    B.是轴对称图形,故本选项正确;
    C.不是轴对称图形,故本选项错误;
    D.不是轴对称图形,故本选项错误.
    故选B.
    10、A
    【解析】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
    解得x=,
    ∴sin∠BED=sin∠CDF=.
    故选:A.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x<-2或x>1
    【解析】
    试题分析:根据函数图象可得:当时,x<-2或x>1.
    考点:函数图象的性质
    12、1.
    【解析】
    先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
    【详解】


    又∵∠A=∠A,
    ∴△ABC∽△AED,

    ∵BC=30,
    ∴DE=1,
    故答案为1.
    【点睛】
    考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    13、
    【解析】
    绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.
    【详解】
    ﹣的绝对值是|﹣|=
    【点睛】
    本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.
    14、50°
    【解析】
    根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
    【详解】
    解:∵AB=AC,∠BAC=80°,
    ∴∠B=∠C=(180°﹣80°)÷2=50°;
    ∵AD∥BC,
    ∴∠DAC=∠C=50°,
    故答案为50°.
    【点睛】
    本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
    15、
    【解析】
    ∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
    ∴其概率是=.
    【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    16、
    【解析】
    观察已知数列得到一般性规律,写出第20个数即可.
    【详解】
    解:观察数列得:第n个数为,则第20个数是.
    故答案为.
    【点睛】
    本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.

    三、解答题(共8题,共72分)
    17、(1)①证明见解析;②;(2)①60°;②证明见解析;
    【解析】
    试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
    ②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
    (2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
    ②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
    试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ②解:∵△ABP∽△BCP,
    ∴,
    ∴PB2=PA•PC=12,
    ∴PB=2;
    (2)解:①∵△ABE与△ACD都为等边三角形,
    ∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
    ∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
    在△ACE和△ABD中,

    ∴△ACE≌△ABD(SAS),
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠CPD=∠6=∠5=60°;
    ②证明:∵△ADF∽△CFP,
    ∴AF•PF=DF•CF,
    ∵∠AFP=∠CFD,
    ∴△AFP∽△CDF.
    ∴∠APF=∠ACD=60°,
    ∴∠APC=∠CPD+∠APF=120°,
    ∴∠BPC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.

    考点:相似形综合题
    18、(1)见解析;(2);(3)当或8时,与相似.
    【解析】
    (1)想办法证明即可解决问题;
    (2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
    (3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
    【详解】
    (1)证明:四边形ABCD是等腰梯形,






    .
    (2)解:作于M,于N.则四边形是矩形.

    在中,,




    .
    (3)解:,


    相似时,与相似,

    当时,,此时,
    当时,,此时,
    综上所述,当PB=5或8时,与△相似.
    【点睛】
    本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
    19、简答:∵OA,
    OB=OC=1500,
    ∴AB=(m).
    答:隧道AB的长约为635m.
    【解析】
    试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.
    试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"

    ∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°
    ∴在Rt△CAO 中,OA==1500×=500m
    在Rt△CBO 中,OB=1500×tan45°=1500m
    ∴AB=1500-500≈1500-865=635(m)
    答:隧道AB的长约为635m.
    考点:锐角三角函数的应用.
    20、 (1)-2,1;(2)x=3;(3)4m.
    【解析】
    (1)因式分解多项式,然后得结论;
    (2)两边平方,把无理方程转化为整式方程,求解,注意验根;
    (3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,
    【详解】
    解:(1),


    所以或或
    ,,;
    故答案为,1;
    (2),
    方程的两边平方,得



    ,,
    当时,,
    所以不是原方程的解.
    所以方程的解是;
    (3)因为四边形是矩形,
    所以,
    设,则
    因为,



    两边平方,得
    整理,得
    两边平方并整理,得

    所以.
    经检验,是方程的解.
    答:的长为.
    【点睛】
    考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
    21、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
    【解析】
    (1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
    (2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
    (3)由图可知甲、乙速度相同;
    (4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
    (5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
    【详解】
    解:(1)由图象可知,A、B两点之间的距离是70米,
    甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
    (2)设线段EF所在直线的函数解析式为:y=kx+b,
    ∵1×(95﹣60)=35,
    ∴点F的坐标为(3,35),
    则,解得,
    ∴线段EF所在直线的函数解析式为y=35x﹣70;
    (3)∵线段FG∥x轴,
    ∴甲、乙两机器人的速度都是60米/分;
    (4)A、C两点之间的距离为70+60×7=490米;
    (5)设前2分钟,两机器人出发x分钟相距21米,
    由题意得,60x+70﹣95x=21,解得,x=1.2,
    前2分钟﹣3分钟,两机器人相距21米时,
    由题意得,35x﹣70=21,解得,x=2.1.
    4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
    设线段GH所在直线的函数解析式为:y=kx+b,则,
    ,解得,
    则直线GH的方程为y=x+,
    当y=21时,解得x=4.6,
    答:两机器人出发1.2分或2.1分或4.6分相距21米.

    【点睛】
    本题考查了一次函数的应用,读懂图像是解题关键..
    22、 (1)见解析;(2) 40°.
    【解析】
    (1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;
    (2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.
    【详解】
    (1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.
    ∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.
    (2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.
    ∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.
    【点睛】
    本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.
    23、4小时.
    【解析】
    本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.
    【详解】
    解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,
    根据题意得:
    解得x=4
    经检验,x=4原方程的根,
    答:客车由高速公路从甲地到乙地需4时.
    【点睛】
    本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.
    24、(1)2;(2)α=75°.
    【解析】
    (1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
    (2)直接利用特殊角的三角函数值计算得出答案.
    【详解】
    解:(1)原式=1+﹣1+﹣□+1=1,
    ∴□=1+﹣1++1﹣1=2;
    (2)∵α为三角形一内角,
    ∴0°<α<180°,
    ∴﹣15°<(α﹣15)°<165°,
    ∵2tan(α﹣15)°=,
    ∴α﹣15°=60°,
    ∴α=75°.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.

    相关试卷

    湖北省襄阳市谷城县2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份湖北省襄阳市谷城县2021-2022学年中考数学考试模拟冲刺卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析: 这是一份2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2022届湖北省襄阳市三十三中市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022届湖北省襄阳市三十三中市级名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,估算的值是在,下列图标中,是中心对称图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map