2022届湖北省襄阳市襄城区中考数学考试模拟冲刺卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.(a2)3=a5B.(a-b)2=a2-b2C.3=3D.=-3
2.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A.4个B.3个C.2个D.1个
3.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )
A.B.C.D.
4.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115°B.120°C.130°D.140°
5.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
A.1B.2C.3D.4
6.下列四个图形中,是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
7.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )
A.B.C.D.
8.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )
A.B.C.D.
9.计算3a2-a2的结果是( )
A.4a2 B.3a2 C.2a2 D.3
10.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
11.图为一根圆柱形的空心钢管,它的主视图是( )
A.B.C.D.
12.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )
A.点MB.点NC.点PD.点Q
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.
14.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.
15.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______
16.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.
17.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm
18.已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:
(1)求此次抽查了多少名学生的成绩;
(2)通过计算将频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.
20.(6分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.
21.(6分)列方程或方程组解应用题:
为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
22.(8分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.
(1)求证:AE⊥EF;
(2)若圆的半径为5,BD=6 求AE的长度.
23.(8分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
(1)求证:BE=CE
(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
①求证:△BEM≌△CEN;
②若AB=2,求△BMN面积的最大值;
③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.
24.(10分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
25.(10分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
求抛物线顶点M的坐标;
若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
26.(12分)综合与实践:
概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .
问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.
拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
27.(12分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1; 以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
D、原式=﹣3,正确,故选D
考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
2、B
【解析】
分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而0
详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1
把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;
∵(−2,0)、(x1,0),且1
∴不等式的两边都乘以a(a<0)得:c>−2a,
∴2a+c>0,∴③正确;
④由4a−2b+c=0得
而0
∴2a−b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.
3、D
【解析】
由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
【详解】
因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
故选D.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
4、A
【解析】
解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.
5、C
【解析】
试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;
∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;
当x=3时,,,即EF==,选项③正确;
当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.
考点:反比例函数与一次函数的交点问题.
6、D
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、是轴对称图形,不是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、不是轴对称图形,是中心对称图形.
故选D.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、D
【解析】
分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.
详解:设乘公交车平均每小时走x千米,根据题意可列方程为:
.
故选D.
点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.
8、C
【解析】
根据A点坐标即可建立平面直角坐标.
【详解】
解:由A(0,2),B(1,1)可知原点的位置,
建立平面直角坐标系,如图,
∴C(2,-1)
故选:C.
【点睛】
本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
9、C
【解析】
【分析】根据合并同类项法则进行计算即可得.
【详解】3a2-a2
=(3-1)a2
=2a2,
故选C.
【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
10、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
11、B
【解析】
试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
故选B.
12、C
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.
【详解】
解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等
根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5
∵OA=OM=ON=OQ≠OP
∴则点A不经过点P
故选C.
【点睛】
此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得,PM=AP.当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
【详解】
如图,
取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,
在Rt△AOD中,
∵OA=2,OD=1,
∴AD==3,
∵∠PAM=∠DAO,∠AMP=∠AOD=90°,
∴△APM∽△ADO,
∴,
即,
∴PM=AP,
∴PC+AP=PC+PM,
∴当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
∵△CND∽△AOD,
∴,
即
∴CN=.
所以CP+AP的最小值为.
故答案为:.
【点睛】
此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.
14、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
67000000000的小数点向左移动10位得到6.7,
所以67000000000用科学记数法表示为,
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、-12
【解析】
过E点作EF⊥OC于F,如图所示:
由条件可知:OE=OA=5,,
所以EF=3,OF=4,
则E点坐标为(-4,3)
设反比例函数的解析式是y=,
则有k=-4×3=-12.
故答案是:-12.
16、(15﹣5)
【解析】
先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
【详解】
∵P为AB的黄金分割点(AP>PB),
∴AP=AB=×10=5﹣5,
∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
故答案为(15﹣5).
【点睛】
本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
17、
【解析】
根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.
【详解】
∵AD是BC边上的高,CE是AB边上的高,
∴AB•CE=BC•AD,
∵AD=6,CE=8,
∴=,
∴=,
∵AB=AC,AD⊥BC,
∴BD=DC=BC,
∵AB2−BD2=AD2,
∴AB2=BC2+36,即BC2=BC2+36,
解得:BC=.
故答案为:.
【点睛】
本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关
18、y=x﹣1
【解析】
分析:根据互相平行的两直线解析式的k值相等设出一次函数的解析式,再把点(﹣2,﹣4)的坐标代入解析式求解即可.
详解:∵一次函数的图象与直线y=x+1平行,∴设一次函数的解析式为y=x+b.
∵一次函数经过点(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以这个一次函数的表达式是:y=x﹣1.
故答案为y=x﹣1.
点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出一次函数解析式是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)50;(2)详见解析;(3)220.
【解析】
(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;
(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;
(3)先得到成绩优秀的频率,再乘以500即可求解.
【详解】
解:(1)4÷0.08=50(名).
答:此次抽查了50名学生的成绩;
(2)a=50×0.32=16(名),
b=50﹣4﹣8﹣16﹣10=12(名),
c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,
如图所示:
(3)500×(0.24+0.2)
=500×0.44
=220(名).
答:本次测试九年级学生中成绩优秀的人数是220名.
【点睛】
本题主要考查数据的收集、 处理以及统计图表。
20、(1)证明见解析;(2).
【解析】
(1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
【详解】
(1)证明:连接,
∵正方形旋转至正方形
∴,
∴
∴
在和中,
,
∴
∴
(2).∠DAG、∠BAE、∠FMC、∠CNF;
由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
【点睛】
本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.
21、15千米.
【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.
【详解】
:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:
=4×
解得:x=15,经检验x=15是原方程的解且符合实际意义.
答:小张用骑公共自行车方式上班平均每小时行驶15千米.
22、(1)详见解析;(2)AE=6.1.
【解析】
(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;
(2)利用相似三角形的判定和性质解答即可.
【详解】
(1)连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
∵OD=OA,
∴∠ODA=∠OAD,
∵点D是弧BC中点,
∴∠EAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥EA,
∴AE⊥EF;
(2)∵AB是直径,
∴∠ADB=90°,
∵圆的半径为5,BD=6
∴AB=10,BD=6,
在Rt△ADB中,,
∵∠EAD=∠DAB,∠AED=∠ADB=90°,
∴△AED∽△ADB,
∴,
即,
解得:AE=6.1.
【点睛】
本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.
23、(1)详见解析;(1)①详见解析;②1;③.
【解析】
(1)只要证明△BAE≌△CDE即可;
(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
②构建二次函数,利用二次函数的性质即可解决问题;
③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
【详解】
(1)证明:如图1中,
∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵E是AD中点,
∴AE=DE,
∴△BAE≌△CDE,
∴BE=CE.
(1)①解:如图1中,
由(1)可知,△EBC是等腰直角三角形,
∴∠EBC=∠ECB=45°,
∵∠ABC=∠BCD=90°,
∴∠EBM=∠ECN=45°,
∵∠MEN=∠BEC=90°,
∴∠BEM=∠CEN,
∵EB=EC,
∴△BEM≌△CEN;
②∵△BEM≌△CEN,
∴BM=CN,设BM=CN=x,则BN=4-x,
∴S△BMN=•x(4-x)=-(x-1)1+1,
∵-<0,
∴x=1时,△BMN的面积最大,最大值为1.
③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.
∴EG=m+m=(1+)m,
∵S△BEG=•EG•BN=•BG•EH,
∴EH==m,
在Rt△EBH中,sin∠EBH=.
【点睛】
本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
24、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“醉美旅游景点B“的学生人数为280人.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
25、(1)M的坐标为;(2)B(4,3);(3)或.
【解析】
利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案
根据抛物线的对称性质解答;
利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围.
【详解】
解:(1) ,
该抛物线的顶点M的坐标为;
由知,该抛物线的顶点M的坐标为;
该抛物线的对称轴直线是,
点A的坐标为,轴,交抛物线于点B,
点A与点B关于直线对称,
;
抛物线与y轴交于点,
.
.
抛物线的表达式为.
抛物线G的解析式为:
由.
由,得:
抛物线与x轴的交点C的坐标为,
点C关于y轴的对称点的坐标为.
把代入,得:.
把代入,得:.
所求m的取值范围是或.
故答案为(1)M的坐标为;(2)B(4,3);(3)或.
【点睛】
本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键.
26、(1);(2);(3).
【解析】
(1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
(2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
(3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
【详解】
解:(1)∵△AB′C′的边长变为了△ABC的n倍,
∴△ABC∽△AB′C′,
∴,
故答案为:.
(2)四边形是矩形,
∴.
.
在中,,
.
.
.
(3)若四边形 ABB′C′为正方形,
则,,
∴,
∴,
又∵在△ABC中,AB=,
∴,
∴
故答案为:.
【点睛】
本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
27、(1)见解析(2)
【解析】
试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.
试题解析:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.
考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.
成绩x分
人数
频率
25≤x<30
4
0.08
30≤x<35
8
0.16
35≤x<40
a
0.32
40≤x<45
b
c
45≤x<50
10
0.2
2024年湖北省襄阳市襄城区中考模拟数学试题(原卷版+解析版): 这是一份2024年湖北省襄阳市襄城区中考模拟数学试题(原卷版+解析版),文件包含2024年湖北省襄阳市襄城区中考模拟数学试题原卷版docx、2024年湖北省襄阳市襄城区中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
2023年湖北省襄阳市襄城区中考数学适应性试卷(含解析): 这是一份2023年湖北省襄阳市襄城区中考数学适应性试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
襄阳市襄城区重点中学2022年中考数学考试模拟冲刺卷含解析: 这是一份襄阳市襄城区重点中学2022年中考数学考试模拟冲刺卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,cs60°的值等于,-sin60°的倒数为,下列说法等内容,欢迎下载使用。