专题22锐角三角函数备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】
展开专题22锐角三角函数
一.选择题(共13小题)
1.(2022•天津)tan45°的值等于( )
A.2 B.1 C. D.
2.(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tanC=2,则边AB的长为( )
A.3 B.3 C.6 D.3
3.(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tanC=2,则边AB的长为( )
A.3 B.3 C.3 D.6
4.(2022•滨州)下列计算结果,正确的是( )
A.(a2)3=a5 B.=3 C.=2 D.cos30°=
5.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为( )
A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m
6.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )
A.y=3x B.y=﹣x+ C.y=﹣2x+11 D.y=﹣2x+12
7.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )
A.2 B.3 C. D.2
8.(2022•广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为( )
A. B. C. D.
9.(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为( )
A. B. C. D.
10.(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为( )
A. B.
C. D.
11.(2022•十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )
A.m(cosα﹣sinα) B.m(sinα﹣cosα)
C.m(cosα﹣tanα) D.﹣
12.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )
A. B. C. D.3
13.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m
二.填空题(共11小题)
14.(2022•岳阳)喜迎二十大,“龙舟故里”赛龙舟.丹丹在汨罗江国际龙舟竞渡中心广场点P处观看200米直道竞速赛.如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=200米,则点P到赛道AB的距离约为 米(结果保留整数,参考数据:≈1.732).
15.(2022•孝感)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
16.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是 m.
17.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sinA的值为 .
18.(2022•泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP的长度为 (结果精确到0.1m).
19.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sinA= .
20.(2022•衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,AE=10m,∠BDG=30°,∠BFG=60°.已知测角仪DA的高度为1.5m,则大雁雕塑BC的高度约为 m.(结果精确到0.1m.参考数据:≈1.732)
21.(2022•凉山州)如图,⊙O的直径AB经过弦CD的中点H,若cos∠CDB=,BD=5,则⊙O的半径为 .
22.(2022•凉山州)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为 .
23.(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sinA的值为 .
24.(2022•金华)图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B′处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8m,在点A观测点F的仰角为45°.
(1)点F的高度EF为 m.
(2)设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是 .
三.解答题(共30小题)
25.(2022•宜宾)计算:
(1)﹣4sin30°+|﹣2|;
(2)(1﹣)÷.
26.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.
27.(2022•乐山)sin30°+﹣2﹣1.
28.(2022•新疆)周末,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为45°,看这栋楼底部的俯角为37°,已知两楼之间的水平距离为30m,求这栋楼的高度.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
29.(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).
30.(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)
31.(2022•天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).
参考数据:tan35°≈0.70,tan42°≈0.90.
32.(2022•眉山)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30°,沿AD方向前进60 m到达B处,测得楼顶C处的仰角为45°,求此建筑物的高.(结果保留整数.参考数据:≈1.41,≈1.73)
33.(2022•台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2.梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
34.(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)
35.(2022•山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).
36.(2022•河南)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).
37.(2022•荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).
38.(2022•河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN∥AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.
(1)求∠C的大小及AB的长;
(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).
(参考数据:tan76°取4,取4.1)
39.(2022•常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
40.(2022•宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)
如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.
(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;
(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?
41.(2022•广元)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E点80m的C处测得山顶A的仰角为30°,从与F点相距10m的D处测得山顶A的仰角为45°,点C、E、F、D在同一直线上,求隧道EF的长度.
42.(2022•湘潭)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中≈0.618):伞柄AH始终平分∠BAC,AB=AC=20cm,当∠BAC=120°时,伞完全打开,此时∠BDC=90°.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:≈1.732)
43.(2022•娄底)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P处,在无外力作用下,弹簧的长度为3cm,即PQ=3cm.开始训练时,将弹簧的端点Q调在点B处,此时弹簧长PB=4cm,弹力大小是100N,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q调到点C处,使弹力大小变为300N,已知∠PBC=120°,求BC的长.
注:弹簧的弹力与形变成正比,即F=k•Δx,k是劲度系数,Δx是弹簧的形变量,在无外力作用下,弹簧的长度为x0,在外力作用下,弹簧的长度为x,则Δx=x﹣x0.
44.(2022•连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.
(1)求阿育王塔的高度CE;
(2)求小亮与阿育王塔之间的距离ED.
(注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)
45.(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).
(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)
46.(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.
(1)连结DE,求线段DE的长.
(2)求点A,B之间的距离.
(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
47.(2022•凉山州)去年,我国南方某地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45°,塔基A所在斜坡与水平线的夹角为30°,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).
48.(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.
参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.
49.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.
如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
50.(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.
(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);
(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)
51.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).
52.(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.
(1)求步道DE的长度(精确到个位);
(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?
(参考数据:≈1.414,≈1.732)
53.(2022•遂宁)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
54.(2022•自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
(1)探究原理
制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.
(2)实地测量
如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)
(3)拓展探究
公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).
专题22锐角三角函数(共54题)-备战2023年中考数学必刷真题考点分类专练(全国通用): 这是一份专题22锐角三角函数(共54题)-备战2023年中考数学必刷真题考点分类专练(全国通用),文件包含专题22锐角三角函数共54题-备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx、专题22锐角三角函数共54题-备战2023年中考数学必刷真题考点分类专练全国通用解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。
2022年中考数学必刷真题考点分类专练(全国通用) 专题22锐角三角函数(共54题)【原卷版+解析】: 这是一份2022年中考数学必刷真题考点分类专练(全国通用) 专题22锐角三角函数(共54题)【原卷版+解析】,共71页。
专题25圆的有关计算备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】: 这是一份专题25圆的有关计算备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,文件包含专题25圆的有关计算备战2023年中考数学必刷真题考点分类专练全国通用解析版docx、专题25圆的有关计算备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。