|试卷下载
搜索
    上传资料 赚现金
    2022届河北省石家庄二十二中学中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    2022届河北省石家庄二十二中学中考数学最后冲刺浓缩精华卷含解析01
    2022届河北省石家庄二十二中学中考数学最后冲刺浓缩精华卷含解析02
    2022届河北省石家庄二十二中学中考数学最后冲刺浓缩精华卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届河北省石家庄二十二中学中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份2022届河北省石家庄二十二中学中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了sin45°的值等于,一组数据,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是(  )
    A. B.
    C. D.
    2.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是(  )

    A.BC=CD B.AD∥BC
    C.AD=BC D.点A与点C关于BD对称
    3.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为(  )

    A.6.06×104立方米/时 B.3.136×106立方米/时
    C.3.636×106立方米/时 D.36.36×105立方米/时
    4.sin45°的值等于(  )
    A. B.1 C. D.
    5.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是(  )
    A. B. C. D.
    7.下列计算正确的是(  )
    A.x2x3=x6 B.(m+3)2=m2+9
    C.a10÷a5=a5 D.(xy2)3=xy6
    8.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )

    A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
    C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
    9.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为(  )

    A.6 B.12 C.18 D.24
    10.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )

    A.8,9 B.8,8.5 C.16,8.5 D.16,10.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算:
    (1)()2=_____;
    (2) =_____.
    12.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.

    13.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.

    14.为了求1+2+22+23+…+22016+22017的值,
    可令S=1+2+22+23+…+22016+22017,
    则2S=2+22+23+24+…+22017+22018,
    因此2S﹣S=22018﹣1,
    所以1+22+23+…+22017=22018﹣1.
    请你仿照以上方法计算1+5+52+53+…+52017的值是_____.
    15.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm

    16.函数中,自变量x的取值范围是 .
    三、解答题(共8题,共72分)
    17.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
    18.(8分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   度;
    (2)请补全条形统计图;
    (3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
    19.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
    (1)求两种机器人每台每小时各分拣多少件包裹;
    (2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

    20.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
    (1)如图1,连接AB′.
    ①若△AEB′为等边三角形,则∠BEF等于多少度.
    ②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
    (2)如图2,连接CB′,求△CB′F周长的最小值.
    (3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.

    21.(8分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
    (1)求被覆盖的这个数是多少?
    (2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.
    22.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
    (1)求直线和双曲线的函数表达式;
    (2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
    ①当点C在双曲线上时,求t的值;
    ②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
    ③当时,请直接写出t的值.

    23.(12分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.
    24.如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=  .半圆D与数轴有两个公共点,设另一个公共点是C.
    ①直接写出m的取值范围是  .
    ②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
    【详解】
    设乙每天完成x个零件,则甲每天完成(x+8)个.
    即得, ,故选B.
    【点睛】
    找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
    2、A
    【解析】
    由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.
    【详解】
    ∵BD是∠ABC的角平分线,
    ∴∠ABD=∠CBD,
    又∵DC∥AB,
    ∴∠ABD=∠CDB,
    ∴∠CBD=∠CDB,
    ∴BC=CD.
    故选A.
    【点睛】
    此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    1010×360×24=3.636×106立方米/时,
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、D
    【解析】
    根据特殊角的三角函数值得出即可.
    【详解】
    解:sin45°=,
    故选:D.
    【点睛】
    本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
    5、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    6、D
    【解析】
    根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.
    【详解】
    解:观察图形可知图案D通过平移后可以得到.
    故选D.
    【点睛】
    本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
    7、C
    【解析】
    根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
    【详解】
    x2•x3=x5,故选项A不合题意;
    (m+3)2=m2+6m+9,故选项B不合题意;
    a10÷a5=a5,故选项C符合题意;
    (xy2)3=x3y6,故选项D不合题意.
    故选:C.
    【点睛】
    本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.
    8、C
    【解析】
    试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
    故选C.

    考点:1、矩形性质,2、勾股定理,3、三角形的中位线
    9、B
    【解析】
    ∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
    ∵AC的垂直平分线交AD于点E,∴AE=CE,
    ∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
    故选B.
    10、A
    【解析】
    根据中位数、众数的概念分别求得这组数据的中位数、众数.
    【详解】
    解:众数是一组数据中出现次数最多的数,即8;
    而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.
    故选A.
    【点睛】
    考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    (1)直接利用分式乘方运算法则计算得出答案;
    (2)直接利用分式除法运算法则计算得出答案.
    【详解】
    (1)()2=;
    故答案为;
    (2) ==.
    故答案为.
    【点睛】
    此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
    12、
    【解析】
    解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
    在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
    故答案为:.

    点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
    13、
    【解析】
    试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴阴影部分的面积是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案为2﹣π.

    考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.
    14、
    【解析】
    根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S的值即可.
    【详解】
    解:令S=1+5+52+53+…+52017,
    则5S=5+52+53+…+52012+52018,
    5S﹣S=﹣1+52018,
    4S=52018﹣1,
    则S=,
    故答案为:.
    【点睛】
    此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.
    15、
    【解析】
    试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
    考点:菱形的性质.
    16、且.
    【解析】
    试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.
    考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.

    三、解答题(共8题,共72分)
    17、25%
    【解析】
    首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
    【详解】
    设这两年中获奖人次的平均年增长率为x,
    根据题意得:48+48(1+x)+48(1+x)2=183,
    解得:x1==25%,x2=﹣(不符合题意,舍去).
    答:这两年中获奖人次的年平均年增长率为25%
    18、 (1) 60,90;(2)见解析;(3) 300人
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
    (2)由(1)可求得了解的人数,继而补全条形统计图;
    (3)利用样本估计总体的方法,即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
    故答案为60,90;
    (2)60﹣15﹣30﹣10=5;
    补全条形统计图得:

    (3)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
    19、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
    【解析】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
    (2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
    【详解】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
    由题意得,,
    解得,,
    答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
    (2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
    由题意得,30a+40(200﹣a)≥7000,
    解得:a≤100,则最多应购进A种机器人100台.
    【点睛】
    本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
    20、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
    【解析】
    (1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
    (2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
    (3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
    【详解】
    (1)①当△AE B′为等边三角形时,∠AE B′=60°,
    由折叠可得,∠BEF=∠BE B′=×120°=60°,
    故答案为60;
    ②A B′∥EF,
    证明:∵点E是AB的中点,
    ∴AE=BE,
    由折叠可得BE=B′E,
    ∴AE=B′E,
    ∴∠EA B′=∠E B′A,
    又∵∠BEF=∠B′EF,
    ∴∠BEF=∠BA B′,
    ∴EF∥A B′;
    (2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
    ∴CF+ B′F=CF+BF=BC=10,
    ∵B′E+ B′C≥CE,
    ∴B′C≥CE﹣B′E=5﹣5,
    ∴B′C最小值为5﹣5,
    ∴△CB′F周长的最小值=10+5﹣5=5+5;
    (3)如图,连接A B′,易得∠A B′B=90°,
    将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
    由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
    由AB=10,B B′=6,可得A B′=8,
    ∴QM=QN=A B′=8,
    设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
    ∵∠BQP=90°,
    ∴22+(8﹣x)2=(6+x)2,
    解得:x=,
    ∴P B′=x=.



    【点睛】
    本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    21、(1)2;(2)α=75°.
    【解析】
    (1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
    (2)直接利用特殊角的三角函数值计算得出答案.
    【详解】
    解:(1)原式=1+﹣1+﹣□+1=1,
    ∴□=1+﹣1++1﹣1=2;
    (2)∵α为三角形一内角,
    ∴0°<α<180°,
    ∴﹣15°<(α﹣15)°<165°,
    ∵2tan(α﹣15)°=,
    ∴α﹣15°=60°,
    ∴α=75°.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    22、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.
    【解析】
    (1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;
    (2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;
    ②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;
    ③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.
    【详解】
    (1)∵直线经过点和
    ∴将点代入得
    解得
    故直线的表达式为
    将点代入直线的表达式得
    解得

    ∵双曲线经过点
    ,解得
    故双曲线的表达式为;
    (2)①轴,点A的坐标为
    ∴点C的横坐标为12
    将其代入双曲线的表达式得
    ∴C的纵坐标为,即
    由题意得,解得
    故当点C在双曲线上时,t的值为;
    ②当时,的大小不发生变化,求解过程如下:
    若点D与点A重合
    由题意知,点C坐标为
    由两点距离公式得:


    由勾股定理得,即
    解得
    因此,在范围内,点D与点A不重合,且在点A左侧
    如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK
    由(1)知,直线AB的表达式为
    令得,则,即
    点K为CD的中点,
    (直角三角形中,斜边上的中线等于斜边的一半)
    同理可得:

    A、D、B、C四点共圆,点K为圆心
    (圆周角定理)


    ③过点B作于M
    由题意和②可知,点D在点A左侧,与点M重合是一个临界位置
    此时,四边形ACBD是矩形,则,即
    因此,分以下2种情况讨论:
    如图2,当时,过点C作于N







    ,即


    由勾股定理得

    解得或(不符题设,舍去)
    当时,同理可得:
    解得或(不符题设,舍去)
    综上所述,t的值为或.

    【点睛】
    本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
    23、(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵
    【解析】
    试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;
    (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.
    试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,
    可得:,
    解得:,
    答:A种树苗的单价为200元,B种树苗的单价为300元.
    (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,
    可得:200a+300(30﹣a)≤8000,
    解得:a≥10,
    答:A种树苗至少需购进10棵.
    考点:1.一元一次不等式的应用;2.二元一次方程组的应用
    24、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
    【解析】
    (1)根据题意由勾股定理即可解答
    (2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
    ②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
    (3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    【详解】
    (1)当半圆与数轴相切时,AB⊥OB,
    由勾股定理得m= ,
    故答案为 .
    (2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
    当O、A、B三点在数轴上时,m=7+4=11,
    ∴半圆D与数轴有两个公共点时,m的取值范围为.
    故答案为.
    ②如图,连接DC,当BC=2时,

    ∵BC=CD=BD=2,
    ∴△BCD为等边三角形,
    ∴∠BDC=60°,
    ∴∠ADC=120°,
    ∴扇形ADC的面积为 ,

    ∴△AOB与半圆D的公共部分的面积为 ;
    (3)如图1,

    当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
    解得x= ,OH= ,AH= ,
    ∴tan∠AOB=,
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,

    设BH=x,则72﹣(4﹣x)2=42﹣x2,
    解得x= ,OH=,AH=,
    ∴tan∠AOB=.
    综合以上,可得tan∠AOB的值为或.
    【点睛】
    此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线

    相关试卷

    河北省邢台八中学2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份河北省邢台八中学2022年中考数学最后冲刺浓缩精华卷含解析,共15页。试卷主要包含了下列各式中计算正确的是,化简等内容,欢迎下载使用。

    2022年河北省保定市乐凯中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年河北省保定市乐凯中学中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年河北省石家庄市28中学教育集团达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年河北省石家庄市28中学教育集团达标名校中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map