2022年河北省石家庄市28中学教育集团达标名校中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是
A. B. C. D.
2.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15 B.0.2 C.0.25 D.0.3
3.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
A.2 B.-2 C.±2 D.-
4.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:
下列说法正确的是( )
A.这10名同学体育成绩的中位数为38分
B.这10名同学体育成绩的平均数为38分
C.这10名同学体育成绩的众数为39分
D.这10名同学体育成绩的方差为2
5.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为( )
A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm2
6.如图是某几何体的三视图,下列判断正确的是( )
A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2
C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2
7.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
| 甲 | 乙 | 丙 | 丁 |
平均数(cm) | 185 | 180 | 185 | 180 |
方差 | 3.6 | 3.6 | 7.4 | 8.1 |
根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
8.下列调查中,调查方式选择合理的是( )
A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
9.若x=-2 是关于x的一元二次方程x2-ax+a2=0的一个根,则a的值为( )
A.1或4 B.-1或-4 C.-1或4 D.1或-4
10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于( )
A.2cm B.3cm C.6cm D.7cm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若式子在实数范围内有意义,则x的取值范围是_______.
12.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________
13.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
14.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.
16.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.
三、解答题(共8题,共72分)
17.(8分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
(1)问题发现
①当θ=0°时,= ;
②当θ=180°时,= .
(2)拓展探究
试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
(3)问题解决
①在旋转过程中,BE的最大值为 ;
②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .
18.(8分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.
19.(8分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF
(1)求证:BF是⊙A的切线.(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
20.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
21.(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)
22.(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:
节目代号 | A | B | C | D | E |
节目类型 | 新闻 | 体育 | 动画 | 娱乐 | 戏曲 |
喜爱人数 | 12 | 30 | m | 54 | 9 |
请你根据以上的信息,回答下列问题:
(1)被调查学生的总数为 人,统计表中m的值为 .扇形统计图中n的值为 ;
(2)被调查学生中,最喜爱电视节目的“众数” ;
(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.
23.(12分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.
球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 18 | 24 | 18 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
24.解方程:.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据主视图的定义判断即可.
【详解】
解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
故选:.
【点睛】
此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
2、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
3、B
【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
【详解】
由题意得:m2-3=1,且m+1<0,
解得:m=-2,
故选:B.
【点睛】
此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
4、C
【解析】
试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
平均数==38.4
方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
∴选项A,B、D错误;
故选C.
考点:方差;加权平均数;中位数;众数.
5、B
【解析】
试题分析:底面积是:9πcm1,
底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
则这个圆锥的全面积为:9π+15π=14πcm1.
故选B.
考点:圆锥的计算.
6、A
【解析】
试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
再根据左视图的高度得出圆柱体的高为2;
故选A.
考点:由三视图判断几何体.
7、A
【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选A.
【点睛】
此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.
8、D
【解析】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;
C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故选D.
9、B
【解析】
试题分析:把x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0
即:4+5a+a2=0
解得:a=-1或-4,
故答案选B.
考点:一元二次方程的解;一元二次方程的解法.
10、D
【解析】
【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
【详解】因为,AB=10cm,BC=4cm,
所以,AC=AB-BC=10-4=6(cm)
因为,点D是线段AC的中点,
所以,CD=3cm,
所以,BD=BC+CD=3+4=7(cm)
故选D
【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≠﹣1
【解析】
分式有意义的条件是分母不等于零.
【详解】
∵式子在实数范围内有意义,
∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.
【点睛】
考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.
12、1
【解析】
设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.
【详解】
设这个正多边的外角为x°,由题意得:
x+5x=180,
解得:x=30,
360°÷30°=1.
故答案为:1.
【点睛】
此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.
13、6
【解析】
根据题意得,2m=3×4,解得m=6,故答案为6.
14、1.1
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
故答案为1.1.
15、2
【解析】
连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.
【详解】
解:如图,连接PB、PC,
由二次函数的性质,OB=PB,PC=AC,
∵△ODA是等边三角形,
∴∠AOD=∠OAD=60°,
∴△POB和△ACP是等边三角形,
∵A(4,0),
∴OA=4,
∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,
即两个二次函数的最大值之和等于2.
故答案为2.
【点睛】
本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.
16、
【解析】
分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值即其发生的概率.
详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是 ,故答案是 .
点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件 A出现m种结果,那么事件A的概率P(A)= .
三、解答题(共8题,共72分)
17、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
【解析】
(1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
【详解】
解:(1)①当θ=0°时,
在Rt△ABC中,AC=BC=2,
∴∠A=∠B=45°,AB=2,
∵AD=DE=AB=,
∴∠AED=∠A=45°,
∴∠ADE=90°,
∴DE∥CB,
∴,
∴,
∴,
故答案为,
②当θ=180°时,如图1,
∵DE∥BC,
∴,
∴,
即:,
∴,
故答案为;
(2)当0°≤θ<360°时,的大小没有变化,
理由:∵∠CAB=∠DAE,
∴∠CAD=∠BAE,
∵,
∴△ADC∽△AEB,
∴;
(3)①当点E在BA的延长线时,BE最大,
在Rt△ADE中,AE=AD=2,
∴BE最大=AB+AE=2+2;
②如图2,
当点E在BD上时,
∵∠ADE=90°,
∴∠ADB=90°,
在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
∴BE=BD+DE=+,
由(2)知,,
∴CD=+1,
如图3,
当点D在BE的延长线上时,
在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
∴BE=BD﹣DE=﹣,
由(2)知,,
∴CD=﹣1.
故答案为 +1或﹣1.
【点睛】
此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
18、足球单价是60元,篮球单价是90元.
【解析】
设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.
【详解】
解:足球的单价分别为x元,篮球单价是1.5x元,
可得:,
解得:x=60,
经检验x=60是原方程的解,且符合题意,
1.5x=1.5×60=90,
答:足球单价是60元,篮球单价是90元.
【点睛】
本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.
19、(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE为菱形;证明见解析;
【解析】
分析(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;
(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
详解:(1)证明:∵EF∥AB
∴∠FAB=∠EFA,∠CAB=∠E
∵AE=AF
∴∠EFA =∠E
∴∠FAB=∠CAB
∵AC=AF,AB=AB
∴△ABC≌△ABF
∴∠AFB=∠ACB=90°, ∴BF是⊙A的切线.
(2)当∠CAB=60°时,四边形ADFE为菱形.
理由:∵EF∥AB
∴∠E=∠CAB=60°
∵AE=AF
∴△AEF是等边三角形
∴AE=EF,
∵AE=AD
∴EF=AD
∴四边形ADFE是平行四边形
∵AE=EF
∴平行四边形ADFE为菱形.
点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.
20、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
21、7.3米
【解析】
:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可.
【详解】
解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,
∴AH=HF,设AH=HF=x,则EF=2x,EH=x,
在Rt△AEB中,∵∠E=30°,AB=5米,
∴AE=2AB=10米,
∴x+x=10,
∴x=5﹣5,
∴EF=2x=10﹣10≈7.3米,
答:E与点F之间的距离为7.3米
【点睛】
本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.
22、(1)150;45,36, (2)娱乐 (3)1
【解析】
(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中喜爱新闻节目的人数所占比例.
【详解】
解:(1)被调查的学生总数为30÷20%=150(人),
m=150−(12+30+54+9)=45,
n%=×100%=36%,即n=36,
故答案为150,45,36;
(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,
∴被调查学生中,最喜爱电视节目的“众数”为娱乐,
故答案为娱乐;
(3)估计该校最喜爱新闻节目的学生人数为2000×=1.
【点睛】
本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
23、 (1)见解析 (2)选择摇奖
【解析】
试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较大小即可.
试题解析:
(1)树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
∴摇出一红一白的概率=;
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴摇奖的平均收益是:×18+×24+×18=22,
∵22>20,
∴选择摇奖.
【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
24、x=,x=﹣2
【解析】
方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
,
则2x(x+1)=3(1﹣x),
2x2+5x﹣3=0,
(2x﹣1)(x+3)=0,
解得:x1=,x2=﹣3,
检验:当x=,x=﹣2时,2(x+1)(1﹣x)均不等于0,
故x=,x=﹣2都是原方程的解.
【点睛】
本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.
2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。
2022年建湖实中教育集团中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年建湖实中教育集团中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了下列计算正确的是,下列命题中,真命题是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。