2022届贵州省六盘水市中考数学模拟试题含解析
展开这是一份2022届贵州省六盘水市中考数学模拟试题含解析,共22页。试卷主要包含了答题时请按要求用笔,如图,△OAB∽△OCD,OA等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )
A. B. C. D.
2.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
3.若关于x的不等式组只有5个整数解,则a的取值范围( )
A. B. C. D.
4.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )
A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3
5.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
6.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
7.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
8.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A. B. C. D.
9.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且AB⊥CD.入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )
A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C
10.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若代数式有意义,则实数x的取值范围是____.
12.分解因式:= .
13.若 m、n 是方程 x2+2018x﹣1=0 的两个根,则 m2n+mn2﹣mn=_________.
14.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.
15.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.
16.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.
三、解答题(共8题,共72分)
17.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
(1)写出抛物线的函数表达式;
(2)判断△ABC的形状,并证明你的结论;
(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.
18.(8分)解不等式组:,并把解集在数轴上表示出来.
19.(8分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.
(1)连接BC,求证:BC=OB;
(2)E是中点,连接CE,BE,若BE=2,求CE的长.
20.(8分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:
(1)小新的速度为_____米/分,a=_____;并在图中画出y2与x的函数图象
(2)求小新路过小华家后,y1与x之间的函数关系式.
(3)直接写出两人离小华家的距离相等时x的值.
21.(8分)如图,点,在上,直线是的切线,.连接交于.
(1)求证:
(2)若,的半径为,求的长.
22.(10分)如图,已知是的外接圆,圆心在的外部,,,求的半径.
23.(12分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.
(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?
24.如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点 C的对应点 C′恰好落在CB的延长线上,边AB交边 C′D′于点E.
(1)求证:BC=BC′;
(2)若 AB=2,BC=1,求AE的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
设,则.
由折叠的性质,得.
因为点是的中点,
所以.
在中,
由勾股定理,得,
即,
解得,
故线段的长为4.
故选C.
【点睛】
此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.
2、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
3、A
【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
【详解】
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
4、C
【解析】
根据不等式的性质得出x的解集,进而解答即可.
【详解】
∵-1<2x+b<1
∴,
∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
∴,
解得:-3≤b≤-1,
故选C.
【点睛】
此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
5、C
【解析】
由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
6、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
7、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
8、D
【解析】
A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
故选D.
9、B
【解析】
【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.
【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;
B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;
C. D→O→C,园丁与入口的距离逐渐增大,不符合;
D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,
故选B.
【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.
10、A
【解析】
此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≠﹣5.
【解析】
根据分母不为零分式有意义,可得答案.
【详解】
由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.
【点睛】
本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.
12、
【解析】
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
先提取公因式后继续应用平方差公式分解即可:。
13、1
【解析】
根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m2n+mm2﹣mn分解因式得到 mn(m+n﹣1),然后利用整体代入的方法计算.
【详解】
解:∵m、n 是方程 x2+2018x﹣1=0 的两个根,
则原式=mn(m+n﹣1)
=﹣1×(﹣2018﹣1)
=﹣1×(﹣1)
=1,
故答案为:1.
【点睛】
本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别
为与,则解题时要注意这两个关 系的合理应用.
14、(0,).
【解析】
试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.
15、
【解析】
如图,有5种不同取法;故概率为 .
16、1
【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.
【详解】
∵△ADE∽△ACB,∴=,即=,
解得:BD=1.
故答案为1.
【点睛】
本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
三、解答题(共8题,共72分)
17、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
(3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
【详解】
解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
把A(8,9),B(0,1)代入y=x2+bx+c得,
解得,
∴抛物线解析式为y=x2﹣7x+1;
故答案为y=x2﹣7x+1;
(2)△ABC为直角三角形.理由如下:
当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
作AM⊥y轴于M,CN⊥y轴于N,如图,
∵B(0,1),A(8,9),C(1,﹣5),
∴BM=AM=8,BN=CN=1,
∴△ABM和△BNC都是等腰直角三角形,
∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
∴∠ABC=90°,
∴△ABC为直角三角形;
(3)∵AB=8,BN=1,
∴AC=10,
∴Rt△ABC的内切圆的半径=,
设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
∵I为△ABC的内心,
∴AI、BI为角平分线,
∴BI⊥y轴,
而AI⊥PQ,
∴PQ为△ABC的外角平分线,
易得y轴为△ABC的外角平分线,
∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
它们到直线AB、BC、AC距离相等,
BI=×2=4,
而BI⊥y轴,
∴I(4,1),
设直线AI的解析式为y=kx+n,
则,
解得,
∴直线AI的解析式为y=2x﹣7,
当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
设直线AP的解析式为y=﹣x+p,
把A(8,9)代入得﹣4+n=9,解得n=13,
∴直线AP的解析式为y=﹣x+13,
当y=1时,﹣x+13=1,则P(24,1)
当x=0时,y=﹣x+13=13,则Q(0,13),
综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
18、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.
【详解】
解不等式①得:x>﹣1,
解不等式②得:x≤3,
则不等式组的解集是:﹣1<x≤3,
不等式组的解集在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.
19、(2)见解析;(2)2+.
【解析】
(2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;
(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.
【详解】
(2)证明:连接OC,
∵AB为⊙O直径,
∴∠ACB=90°,
∵CD为⊙O切线
∴∠OCD=90°,
∴∠ACO=∠DCB=90°﹣∠OCB,
∵CA=CD,
∴∠CAD=∠D.
∴∠COB=∠CBO.
∴OC=BC.
∴OB=BC;
(2)连接AE,过点B作BF⊥CE于点F,
∵E是AB中点,
∴,
∴AE=BE=2.
∵AB为⊙O直径,
∴∠AEB=90°.
∴∠ECB=∠BAE=45°,,
∴.
∴CF=BF=2.
∴.
∴.
【点睛】
本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
20、(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);
(3)两人离小华家的距离相等时,x的值为2.4或12.
【解析】
(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;
(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;
(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.
【详解】
(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,
小新按此速度再走16分钟到达书店,则a=16×60=960米,
小华到书店的时间为960÷40=24分钟,
则y2与x的函数图象为:
故小新的速度为60米/分,a=960;
(2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0),
将点(4,0),(20,960)代入得:
,
解得:,
∴y1=60x﹣240(4≤x≤20时)
(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x,
①当两人分别在小华家两侧时,若两人到小华家距离相同,
则240﹣6x=40x,
解得:x=2.4;
②当小新经过小华家并追上小华时,两人到小华家距离相同,
则60x﹣240=40x,
解得:x=12;
故两人离小华家的距离相等时,x的值为2.4或12.
21、(1)证明见解析;(2)1.
【解析】
(1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
【详解】
(1)如图,连接,
∵切于,
∴,
∴
又∵,
∴在中:
∵,
∴,
∴,
又∵,
∴,
∴;
(2)∵在中:, ,
由勾股定理得:,
由(1)得:,
∴.
【点睛】
此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
22、4
【解析】
已知△ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.
【详解】
作于点,则直线为的中垂线,直线过点,
,,
,
即,
.
【点睛】
考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.
23、(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
【解析】
试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;
(1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;
解:(1)设鸡场垂直于墙的一边AB的长为x米,
则 x(40﹣1x)=168,
整理得:x1﹣10x+84=0,
解得:x1=2,x1=6,
∵墙长15m,
∴0≤BC≤15,即0≤40﹣1x≤15,
解得:7.5≤x≤10,
∴x=2.
答:鸡场垂直于墙的一边AB的长为2米.
(1)围成养鸡场面积为S米1,
则S=x(40﹣1x)
=﹣1x1+40x
=﹣1(x1﹣10x)
=﹣1(x1﹣10x+101)+1×101
=﹣1(x﹣10)1+100,
∵﹣1(x﹣10)1≤0,
∴当x=10时,S有最大值100.
即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.
24、(1)证明见解析;(2)AE=.
【解析】
(1)连结 AC、AC′,根据矩形的性质得到∠ABC=90°,即 AB⊥CC′, 根据旋转的性质即可得到结论;
(2)根据矩形的性质得到 AD=BC,∠D=∠ABC′=90°,根据旋转的性质得到 BC′=AD′,AD=AD′,证得 BC′=AD′,根据全等三角形的性质得到 BE=D′E,设 AE=x,则 D′E=2﹣x,根据勾股定理列方程即可得到结论.
【详解】
解::(1)连结 AC、AC′,
∵四边形 ABCD为矩形,
∴∠ABC=90°,即 AB⊥CC′,
∵将矩形 ABCD 绕点A顺时针旋转,得到矩形 AB′C′D′,
∴AC=AC′,
∴BC=BC′;
(2)∵四边形 ABCD 为矩形,
∴AD=BC,∠D=∠ABC′=90°,
∵BC=BC′,
∴BC′=AD′,
∵将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 AB′C′D′,
∴AD=AD′,
∴BC′=AD′,
在△AD′E 与△C′BE中
∴△AD′E≌△C′BE,
∴BE=D′E,
设 AE=x,则 D′E=2﹣x,
在 Rt△AD′E 中,∠D′=90°,
由勾定理,得 x2﹣(2﹣x)2=1,
解得 x=,
∴AE= .
【点睛】
本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键.
相关试卷
这是一份2023年贵州省六盘水市中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份六盘水市重点中学2022年中考数学模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,2cs 30°的值等于等内容,欢迎下载使用。
这是一份贵州省六盘水市达标名校2021-2022学年中考数学模拟试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的方程=无解,则k的值为,下列各式属于最简二次根式的有,一组数据,下列运算正确的是等内容,欢迎下载使用。