2021-2022学年贵州省沿河县夹石中学中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )
A. B. C. D.
2.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:
①当G1与G2有公共点时,y1随x增大而减小;
②当G1与G2没有公共点时,y1随x增大而增大;
③当k=2时,G1与G2平行,且平行线之间的距离为.
下列选项中,描述准确的是( )
A.①②正确,③错误 B.①③正确,②错误
C.②③正确,①错误 D.①②③都正确
3.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是( )
A.﹣2 B. C.2 D.4
4.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( )
A. B. C. D.
5.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为( )
A.﹣ B.﹣3 C. D.3
6.下列各式计算正确的是( )
A. B. C. D.
7.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( )
A.120° B.135° C.150° D.165°
8.下列运算正确的是( )
A.a2·a3﹦a6 B.a3+ a3﹦a6 C.|-a2|﹦a2 D.(-a2)3﹦a6
9.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为( )
A.28 B.26 C.25 D.22
10.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
二、填空题(本大题共6个小题,每小题3分,共18分)
11. 如图,已知,要使,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)
12.计算:=________.
13.若是关于的完全平方式,则__________.
14.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.
15.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.
16.如图,已知,,则________.
三、解答题(共8题,共72分)
17.(8分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
18.(8分)先化简,再求值:(﹣m+1)÷,其中m的值从﹣1,0,2中选取.
19.(8分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
20.(8分)综合与探究:
如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
(1)求二次函数的表达式;
(2)求点 A,B 的坐标;
(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.
21.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
22.(10分)先化简(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
23.(12分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
24.先化简,再求值:,其中x=,y=.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
故选A.
2、D
【解析】
画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.
【详解】
解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,
N(﹣1,2),Q(2,7)为G2的两个临界点,
易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),
直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;
当G1与G2没有公共点时,分三种情况:
一是直线MN,但此时k=0,不符合要求;
二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;
三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;
当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM=2,
∴PM=2PN,
由勾股定理得:PN2+PM2=MN2
∴(2PN)2+(PN)2=9,
∴PN=,
∴PM=.
故③正确.
综上,故选:D.
【点睛】
本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.
3、C
【解析】
分析:将x=-2代入方程即可求出a的值.
详解:将x=-2代入可得:4a-2a-4=0, 解得:a=2,故选C.
点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.
4、B
【解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
【详解】
画树状图如下:
由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
故选B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
5、B
【解析】
设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
【详解】
设该点的坐标为(a,b),则|b|=1|a|,
∵点(a,b)在正比例函数y=kx的图象上,
∴k=±1.
又∵y值随着x值的增大而减小,
∴k=﹣1.
故选:B.
【点睛】
本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
6、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
7、C
【解析】
这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.
【详解】
解:设这个扇形的圆心角的度数为n°,
根据题意得20π=,
解得n=150,
即这个扇形的圆心角为150°.
故选C.
【点睛】
本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).
8、C
【解析】
根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
【详解】
a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
【点睛】
本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
9、A
【解析】
如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.
【详解】
如图,
由题意得:BM=MN(设为λ),CN=DN=3;
∵四边形ABCD为矩形,
∴BC=AD=9,∠C=90°,MC=9-λ;
由勾股定理得:λ2=(9-λ)2+32,
解得:λ=5,
∴五边形ABMND的周长=6+5+5+3+9=28,
故选A.
【点睛】
该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.
10、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、可添∠ABD=∠CBD或AD=CD.
【解析】
由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.
【详解】
.可添∠ABD=∠CBD或AD=CD,
①∠ABD=∠CBD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SAS);
②AD=CD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SSS),
故答案为∠ABD=∠CBD或AD=CD.
【点睛】
本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.
12、.
【解析】
根据异分母分式加减法法则计算即可.
【详解】
原式.
故答案为:.
【点睛】
本题考查了分式的加减,关键是掌握分式加减的计算法则.
13、1或-1
【解析】
【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
详解:∵x2+2(m-3)x+16是关于x的完全平方式,
∴2(m-3)=±8,
解得:m=-1或1,
故答案为-1或1.
点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
14、70°
【解析】
试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.
故答案为70°.
考点:角的计算;平行线的性质.
15、
【解析】
分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.
详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为0<PB<.
点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、65°
【解析】
根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
∵m∥n,∠1=105°,
∴∠3=180°−∠1=180°−105°=75°
∴∠α=∠2−∠3=140°−75°=65°
故答案为:65°.
【点睛】
此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.
三、解答题(共8题,共72分)
17、(1)1000 (2)200 (3)54° (4)4000人
【解析】
试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
(3)利用360°乘以对应的比例即可求解;
(4)利用20000除以调查的总人数,然后乘以200即可求解.
试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
(2)剩少量的人数是1000-400-250-150=200(名),
;
(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
(4)×200=4000(人).
答:校20000名学生一餐浪费的食物可供4000人食用一餐.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
18、 ,当m=0时,原式=﹣1.
【解析】
原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,不等于-1、2,将代入原式即可解出答案.
【详解】
解:原式,
,
,
,
∵且,
∴当时,原式.
【点睛】
本题主要考查分数的性质、通分,四则运算法则以及倒数.
19、(1);(2);(3)一.
【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
【详解】
解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.
【点睛】
本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
20、(1);(2);(3).
【解析】
(1)将点代入二次函数解析式即可;
(2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
【详解】
解:(1)∵点在二次函数的图象上,
.
解方程,得
∴二次函数的表达式为.
(2)如图1,过点作轴,垂足为.
.
,
.
在和中,
∵,
.
∵点的坐标为 ,
.
.
(3)如图2,把沿轴正方向平移,
当点落在抛物线上点处时,设点的坐标为.
解方程得:(舍去)或
由平移的性质知,且,
∴四边形为平行四边形,
.
扫过区域的面积== .
【点睛】
本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
21、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【解析】
(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
【详解】
(1)根据题意得:
y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
自变量x的取值范围是:0<x≤10且x为正整数;
(2)当y=2520时,得﹣10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去)
当x=2时,30+x=32(元)
答:每件玩具的售价定为32元时,月销售利润恰为2520元.
(3)根据题意得:
y=﹣10x2+130x+2300
=﹣10(x﹣6.5)2+2722.5,
∵a=﹣10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【点睛】
本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
22、1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:原式===;
当a=0时,原式=1.
考点:分式的化简求值.
23、(1)见解析;(1)见解析.
【解析】
(1)由全等三角形的判定定理AAS证得结论.
(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.
【详解】
解:(1)证明:如图,∵四边形ABCD是平行四边形,
∴AD∥BC.
又∵点F在CB的延长线上,
∴AD∥CF.
∴∠1=∠1.
∵点E是AB边的中点,
∴AE=BE,
∵在△ADE与△BFE中,,
∴△ADE≌△BFE(AAS).
(1)CE⊥DF.理由如下:
如图,连接CE,
由(1)知,△ADE≌△BFE,
∴DE=FE,即点E是DF的中点,∠1=∠1.
∵DF平分∠ADC,
∴∠1=∠2.
∴∠2=∠1.
∴CD=CF.
∴CE⊥DF.
24、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
2023年贵州省铜仁市沿河县第一教育集团中考数学一模试卷(含解析): 这是一份2023年贵州省铜仁市沿河县第一教育集团中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
贵州省黔西县2021-2022学年中考数学模拟精编试卷含解析: 这是一份贵州省黔西县2021-2022学年中考数学模拟精编试卷含解析,共22页。
2022年江阴市石庄中学中考数学模拟预测题含解析: 这是一份2022年江阴市石庄中学中考数学模拟预测题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式计算正确的是等内容,欢迎下载使用。