


2022届广东省揭阳市揭西县重点中学中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )
A.12 B.16 C.18 D.24
2.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
3.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
4.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )
A. B. C. D.
5.下列计算结果等于0的是( )
A. B. C. D.
6.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
甲的路线为:A→C→B;
乙的路线为:A→D→E→F→B,其中E为AB的中点;
丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为( )
A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
7.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
8.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1 B.k<2且k≠1
C.k=2 D.k=2或1
9.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( )
A.6×105 B.6×106 C.6×107 D.6×108
10.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是( )
A.50° B.60° C.70° D.80°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:
价格/(元/kg)
12
10
8
合计/kg
小菲购买的数量/kg
2
2
2
6
小琳购买的数量/kg
1
2
3
6
从平均价格看,谁买得比较划算?( )
A.一样划算 B.小菲划算C.小琳划算 D.无法比较
12.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.
13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
种子粒数
100
400
800
1 000
2 000
5 000
发芽种子粒数
85
318
652
793
1 604
4 005
发芽频率
0.850
0.795
0.815
0.793
0.802
0.801
根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
14.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____
15.如图,若点 的坐标为 ,则 =________.
16.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.
三、解答题(共8题,共72分)
17.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
(1)写出抛物线的函数表达式;
(2)判断△ABC的形状,并证明你的结论;
(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.
18.(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
求点B的坐标;若△ABC的面积为4,求的解析式.
19.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点
(1)MN的长等于_______,
(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
20.(8分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
商品名称
甲
乙
进价(元/件)
40
90
售价(元/件)
60
120
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
21.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
22.(10分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
(1)求证:四边形CDBE为矩形;
(2)若AC=2,,求DE的长.
23.(12分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.
(1)求证:.
(2)若,求的长.
24.如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
解:∵四边形ABCD为矩形,
∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,
∵BF==6,
∴CF=BC-BF=10-6=4,
∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.
故选A.
2、D
【解析】
根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
【详解】
解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
故选:D.
【点睛】
本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
3、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
4、D
【解析】
两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.
【详解】
因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,
所以P(飞镖落在黑色区域)==.
故答案选:D.
【点睛】
本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.
5、A
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=0,符合题意;
B、原式=-1+(-1)=-2,不符合题意;
C、原式=-1,不符合题意;
D、原式=-1,不符合题意,
故选:A.
【点睛】
本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
6、A
【解析】
分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
图3与图1中,三个三角形相似,所以 ====.
∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
∴甲=丙.∴甲=乙=丙.
故选A.
点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
7、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
8、D
【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
【详解】
当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
∴△=(-4)2-4(k-1)×4=0,
解得k=2,
综上可知k的值为1或2,
故选D.
【点睛】
本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
9、C
【解析】
将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
【详解】
解:6000万=6×1.
故选:C.
【点睛】
此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.
10、B
【解析】
试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
考点:旋转的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、C
【解析】
试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.
考点:平均数的计算.
12、10
【解析】
连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.
【详解】
连接OC,当CD⊥OA时CD的值最小,
∵OA=13,AB=1,
∴OB=13-1=12,
∴BC=,
∴CD=5×2=10.
故答案为10.
【点睛】
本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .
13、1.2
【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.
【详解】
∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,
∴该玉米种子发芽的概率为1.2,
故答案为1.2.
【点睛】
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
14、
【解析】
利用勾股定理求出AB,再证明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解决问题.
【详解】
在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,
∴AB==5,
∵四边形ABDE是菱形,
∴AB=BD=5,OA=OD,
∴OC=OA=OD,
∴∠OCB=∠ODC,
∴tan∠OCB=tan∠ODC==,
故答案为.
【点睛】
本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
15、
【解析】
根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
【详解】
如图,由勾股定理,得:OA==1.sin∠1=,故答案为.
16、(﹣2016, +1)
【解析】
据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
【详解】
解:∵△ABC是等边三角形AB=3﹣1=2,
∴点C到x轴的距离为1+2×=+1,
横坐标为2,
∴C(2, +1),
第2018次变换后的三角形在x轴上方,
点C的纵坐标为+1,
横坐标为2﹣2018×1=﹣2016,
所以,点C的对应点C′的坐标是(﹣2016,+1)
故答案为:(﹣2016,+1)
【点睛】
本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
三、解答题(共8题,共72分)
17、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
(3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
【详解】
解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
把A(8,9),B(0,1)代入y=x2+bx+c得,
解得,
∴抛物线解析式为y=x2﹣7x+1;
故答案为y=x2﹣7x+1;
(2)△ABC为直角三角形.理由如下:
当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
作AM⊥y轴于M,CN⊥y轴于N,如图,
∵B(0,1),A(8,9),C(1,﹣5),
∴BM=AM=8,BN=CN=1,
∴△ABM和△BNC都是等腰直角三角形,
∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
∴∠ABC=90°,
∴△ABC为直角三角形;
(3)∵AB=8,BN=1,
∴AC=10,
∴Rt△ABC的内切圆的半径=,
设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
∵I为△ABC的内心,
∴AI、BI为角平分线,
∴BI⊥y轴,
而AI⊥PQ,
∴PQ为△ABC的外角平分线,
易得y轴为△ABC的外角平分线,
∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
它们到直线AB、BC、AC距离相等,
BI=×2=4,
而BI⊥y轴,
∴I(4,1),
设直线AI的解析式为y=kx+n,
则,
解得,
∴直线AI的解析式为y=2x﹣7,
当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
设直线AP的解析式为y=﹣x+p,
把A(8,9)代入得﹣4+n=9,解得n=13,
∴直线AP的解析式为y=﹣x+13,
当y=1时,﹣x+13=1,则P(24,1)
当x=0时,y=﹣x+13=13,则Q(0,13),
综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
18、(1)(0,3);(2).
【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
【详解】
(1)在Rt△AOB中,
∵,
∴,
∴OB=3,
∴点B的坐标是(0,3) .
(2)∵=BC•OA,
∴BC×2=4,
∴BC=4,
∴C(0,-1).
设的解析式为,
把A(2,0),C(0,-1)代入得:,
∴,
∴的解析式为是.
考点:一次函数的性质.
19、(1);(2)见解析.
【解析】
(1)根据勾股定理即可得到结论;
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.
【详解】
(1);
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P
【点睛】
本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.
20、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.
【详解】
(Ⅰ)根据题意得:
则y与x的函数关系式为.
(Ⅱ),解得.
∴至少要购进20件甲商品.
,
∵,
∴y随着x的增大而减小
∴当时,有最大值,.
∴若售完这些商品,则商场可获得的最大利润是2800元.
【点睛】
本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.
21、官有200人,兵有800人
【解析】
设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设官有x人,兵有y人,
依题意,得:
,
解得: .
答:官有200人,兵有800人.
【点睛】
本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
22、 (1)见解析;(2)1
【解析】
分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.
详解:(1)证明:
∵ CD⊥AB于点D,BE⊥AB于点B,
∴ .
∴ CD∥BE.
又∵ BE=CD,
∴ 四边形CDBE为平行四边形.
又∵,
∴ 四边形CDBE为矩形.
(2)解:∵ 四边形CDBE为矩形,
∴ DE=BC.
∵ 在Rt△ABC中,,CD⊥AB,
可得 .
∵ ,
∴ .
∵ 在Rt△ABC中,,AC=2,,
∴ .
∴ DE=BC=1.
点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.
23、(1)证明见解析;(2)
【解析】
(1)由题意推出再结合,可得△BHE~△BCO.
(2)结合△BHE~△BCO ,推出带入数值即可.
【详解】
(1)证明:∵为圆的半径,是的中点,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
又∵,
∴∽.
(2)∵∽,
∴,
∵,,
∴得,
解得,
∴.
【点睛】
本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.
24、调整后的滑梯AD比原滑梯AB增加2.5米
【解析】
试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.
试题解析: Rt△ABD中,
∵AC=3米,
∴AD=2AC=6(m)
∵在Rt△ABC中,
∴AD−AB=6−3.53≈2.5(m).
∴调整后的滑梯AD比原滑梯AB增加2.5米.
2024年广东省揭阳市揭西县五校联考中考一模数学试题(含解析): 这是一份2024年广东省揭阳市揭西县五校联考中考一模数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年广东省揭阳市揭西县重点中学九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年广东省揭阳市揭西县重点中学九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省揭阳市揭西县上沙中学等四校中考数学联考试卷(含解析): 这是一份2023年广东省揭阳市揭西县上沙中学等四校中考数学联考试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。