|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届福建省福州市晋安区中考数学模试卷含解析
    立即下载
    加入资料篮
    2022届福建省福州市晋安区中考数学模试卷含解析01
    2022届福建省福州市晋安区中考数学模试卷含解析02
    2022届福建省福州市晋安区中考数学模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省福州市晋安区中考数学模试卷含解析

    展开
    这是一份2022届福建省福州市晋安区中考数学模试卷含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为(  )
    A. B. C. D.
    2.下列图形是轴对称图形的有(  )

    A.2个 B.3个 C.4个 D.5个
    3.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是  

    A. B. C. D.3
    4.若a+b=3,,则ab等于( )
    A.2 B.1 C.﹣2 D.﹣1
    5.将三粒均匀的分别标有,,,,,的正六面体骰子同时掷出,朝上一面上的数字分别为,,,则,,正好是直角三角形三边长的概率是(  )
    A. B. C. D.
    6.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是(  )

    A. B. C.9 D.
    7.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    8.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4
    C. D.(a2b)3=a5b3
    9.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为(  )
    A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
    10.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
    A.线段 B.等边三角形 C.正方形 D.平行四边形
    11.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(  )
    A. B. C. D.
    12.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.

    14.因式分解: =
    15.分式方程的解为__________.
    16.如图,中,,,,,平分,与相交于点,则的长等于_____.

    17.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.

    18.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).
    (1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.
    (2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.

    20.(6分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
    (1)若,DC=4,求AB的长;
    (2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.

    21.(6分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
    (1)求证:△ADC∽△ACB;
    (2)CE与AD有怎样的位置关系?试说明理由;
    (3)若AD=4,AB=6,求的值.

    22.(8分)观察下列等式:
    ①1×5+4=32;
    ②2×6+4=42;
    ③3×7+4=52;

    (1)按照上面的规律,写出第⑥个等式:_____;
    (2)模仿上面的方法,写出下面等式的左边:_____=502;
    (3)按照上面的规律,写出第n个等式,并证明其成立.
    23.(8分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.

    请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为   ,圆心角度数是   度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.
    24.(10分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)

    25.(10分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,

    26.(12分)列方程解应用题:
    为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
    信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
    信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
    根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
    27.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
    (1)求证:BC是⊙O的切线;
    (2)若⊙O的半径为6,BC=8,求弦BD的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    按照解一元一次不等式的步骤求解即可.
    【详解】
    去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.
    【点睛】
    数形结合思想是初中常用的方法之一.
    2、C
    【解析】
    试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选C.
    考点:轴对称图形.
    3、B
    【解析】
    如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
    【详解】
    解:如图,AB的中点即数轴的原点O.
    根据数轴可以得到点A表示的数是.
    故选:B.
    【点睛】
    此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
    4、B
    【解析】
    ∵a+b=3,
    ∴(a+b)2=9
    ∴a2+2ab+b2=9
    ∵a2+b2=7
    ∴7+2ab=9,7+2ab=9
    ∴ab=1.
    故选B.
    考点:完全平方公式;整体代入.
    5、C
    【解析】
    三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.
    【详解】
    解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,
    故选C.
    【点睛】
    本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.
    6、A
    【解析】
    解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.

    点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
    7、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    8、B
    【解析】
    由整数指数幂和分式的运算的法则计算可得答案.
    【详解】
    A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
    B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
    C项,根据分式的加法法则可得:,故C项错误;
    D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
    故本题正确答案为B.
    【点睛】
    幂的运算法则:
    (1) 同底数幂的乘法: (m、n都是正整数)
    (2)幂的乘方:(m、n都是正整数)
    (3)积的乘方: (n是正整数)
    (4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
    (5)零次幂:(a≠0)
    (6) 负整数次幂: (a≠0, p是正整数).
    9、A
    【解析】
    先将抛物线解析式化为顶点式,左加右减的原则即可.
    【详解】

    当向左平移2个单位长度,再向上平移3个单位长度,得
    .
    故选A.
    【点睛】
    本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
    10、B
    【解析】
    根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
    B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
    C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
    D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    11、C
    【解析】
    画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
    【详解】
    解:画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:.
    故答案为C.
    【点睛】
    本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
    12、D
    【解析】
    连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.
    【详解】
    如图,连接AC、CF,

    ∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
    ∴AC= ,CF=3,
    ∠ACD=∠GCF=45°,
    ∴∠ACF=90°,
    由勾股定理得,AF=,
    ∵CH⊥AF,
    ∴,
    即,
    ∴CH=.
    故选D.
    【点睛】
    本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
    【详解】
    解:∵BD=CD,
    ∴,
    ∴OD⊥BC,
    ∴BE=CE,
    而OA=OB,
    ∴OE为△ABC的中位线,
    ∴,
    ∴DE=OD-OE=5-3=1.
    故答案为1.

    【点睛】
    此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
    14、﹣3(x﹣y)1
    【解析】
    解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.
    点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.
    15、-1
    【解析】
    【分析】先去分母,化为整式方程,然后再进行检验即可得.
    【详解】两边同乘(x+2)(x-2),得:x-2﹣3x=0,
    解得:x=-1,
    检验:当x=-1时,(x+2)(x-2)≠0,
    所以x=-1是分式方程的解,
    故答案为:-1.
    【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    16、3
    【解析】
    如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
    【详解】
    如图,延长CE、DE,分别交AB于G、H,
    ∵∠BAD=∠ADE=60°,
    ∴△ADH是等边三角形,
    ∴DH=AD=AH=5,∠DHA=60°,
    ∵AC=BC,CE平分∠ACB,∠ACB=90°,
    ∴AB==8,AG=AB=4,CG⊥AB,
    ∴GH=AH=AG=5-4=1,
    ∵∠DHA=60°,
    ∴∠GEH=30°,
    ∴EH=2GH=2
    ∴DE=DH-EH=5=2=3.

    故答案为:3
    【点睛】
    本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
    17、14s或38s.
    【解析】
    试题解析:分两种情况进行讨论:
    如图:




    旋转的度数为:
    每两秒旋转


    如图:





    旋转的度数为:
    每两秒旋转


    故答案为14s或38s.
    18、
    【解析】
    利用P(A)=,进行计算概率.
    【详解】
    从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.
    故答案是:.
    【点睛】
    本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y1=-20x+1200, 800;(2)15≤x≤40.
    【解析】
    (1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.
    【详解】
    解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-20×20+1200=800,
    (2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y1+y2=-20x+1200+25x-500=5x+700,
    由题意

    解得该不等式组的解集为15≤x≤40
    所以发生严重干旱时x的范围为15≤x≤40.
    【点睛】
    此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.
    20、(1);(2)30°
    【解析】
    (1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
    (2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
    【详解】
    解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
    ∴∠DEC=90°,AE=EC,
    ∵∠ABC=90°,∠C=∠C,
    ∴∠A=∠CDE,△ABC∽△DEC,
    ∴sin∠CDE=,AB:AC=DE:DC,
    ∵DC=4,
    ∴ED=3,
    ∴DE=,
    ∴AC=6,
    ∴AB:6=:4,
    ∴AB=;
    (2)连接OE,
    ∵∠DEC=90°,
    ∴∠EDC+∠C=90°,
    ∵BE是⊙O的切线,
    ∴∠BEO=90°,
    ∴∠EOB+∠EBC=90°,
    ∵E是AC的中点,∠ABC=90°,
    ∴BE=EC,
    ∴∠EBC=∠C,
    ∴∠EOB=∠EDC,
    又∵OE=OD,
    ∴△DOE是等边三角形,
    ∴∠EDC=60°,
    ∴∠C=30°.

    【点睛】
    考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
    21、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
    【解析】
    (1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
    (2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
    (3)根据相似三角形的性质列出比例式,计算即可.
    【详解】
    解:(1)∵AC平分∠DAB,
    ∴∠DAC=∠CAB,
    又∵AC2=AB•AD,
    ∴AD:AC=AC:AB,
    ∴△ADC∽△ACB;
    (2)CE∥AD,
    理由:∵△ADC∽△ACB,
    ∴∠ACB=∠ADC=90°,
    又∵E为AB的中点,
    ∴∠EAC=∠ECA,
    ∵∠DAC=∠CAE,
    ∴∠DAC=∠ECA,
    ∴CE∥AD;
    (3)∵AD=4,AB=6,CE=AB=AE=3,
    ∵CE∥AD,
    ∴∠FCE=∠DAC,∠CEF=∠ADF,
    ∴△CEF∽△ADF,
    ∴==,
    ∴=.
    22、6×10+4=82 48×52+4
    【解析】
    (1)根据题目中的式子的变化规律可以解答本题;
    (2)根据题目中的式子的变化规律可以解答本题;
    (3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
    【详解】
    解:(1)由题目中的式子可得,
    第⑥个等式:6×10+4=82,
    故答案为6×10+4=82;
    (2)由题意可得,
    48×52+4=502,
    故答案为48×52+4;
    (3)第n个等式是:n×(n+4)+4=(n+2)2,
    证明:∵n×(n+4)+4
    =n2+4n+4
    =(n+2)2,
    ∴n×(n+4)+4=(n+2)2成立.
    【点睛】
    本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
    23、(1)35%,126;(2)见解析;(3)1344人
    【解析】
    (1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;
    (2)求出3小时以上的人数,补全条形统计图即可;
    (3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.
    【详解】
    (1)根据题意得:1﹣(40%+18%+7%)=35%,
    则“玩游戏”对应的圆心角度数是360°×35%=126°,
    故答案为35%,126;
    (2)根据题意得:40÷40%=100(人),
    ∴3小时以上的人数为100﹣(2+16+18+32)=32(人),
    补全图形如下:

    (3)根据题意得:2100×=1344(人),
    则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.
    【点睛】
    本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.
    24、不满足安全要求,理由见解析.
    【解析】
    在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
    【详解】
    解:施工方提供的设计方案不满足安全要求,理由如下:
    在Rt△ABC中,AC=15m,∠ABC=45°,
    ∴BC==15m.
    在Rt△EFG中,EG=15m,∠EFG=37°,
    ∴GF=≈=20m.
    ∵EG=AC=15m,AC⊥BC,EG⊥BC,
    ∴EG∥AC,
    ∴四边形EGCA是矩形,
    ∴GC=EA=2m,
    ∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
    ∴施工方提供的设计方案不满足安全要求.
    25、14.2米;
    【解析】
    Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.
    【详解】
    设米
    ∵∠C=45°
    在中,米,

     又米,
    在中
    Tan∠ADB= ,
    Tan60°=
    解得
    答,建筑物的高度为米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
    26、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【解析】
    设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
    【详解】
    解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
    根据题意得:
    解得:x=1.
    经检验:x=1是原方程的解且符合实际问题的意义.
    ∴1.2x=1.2×1=2.
    答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【点睛】
    此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
    27、(1)详见解析;(2)BD=9.6.
    【解析】
    试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
    (2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
    试题解析:(1)证明:如下图所示,连接OB.
    ∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
    ∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
    ∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
    ∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.

    (2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
    ∵ ,∴ ,
    ∴.
    点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.

    相关试卷

    2023-2024学年福建省福州市晋安区七年级(下)期中数学试卷(含解析): 这是一份2023-2024学年福建省福州市晋安区七年级(下)期中数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省福州市晋安区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年福建省福州市晋安区八年级(下)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省福州市晋安区重点中学中考数学适应性试卷(含解析): 这是一份2023年福建省福州市晋安区重点中学中考数学适应性试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map