2021-2022学年四川省渠县中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有
A.2个 B.3个 C.4个 D.5个
2.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
3.若kb<0,则一次函数的图象一定经过( )
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
4.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为
A.75 B.89 C.103 D.139
5.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )
A.91,88 B.85,88 C.85,85 D.85,84.5
6.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( )
A.6×105 B.6×106 C.6×107 D.6×108
7.已知,则的值为
A. B. C. D.
8.tan45°的值等于( )
A. B. C. D.1
9.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是( )
A.b2>4ac B.ax2+bx+c≤6
C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=0
10.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为( )
A. cm B.cm C.cm D. cm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.
12.抛物线y=﹣x2+4x﹣1的顶点坐标为 .
13.计算的结果是_____
14.抛物线 的顶点坐标是________.
15.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.
16.已知a1=,a2=,a3=,a4=,a5=,…,则an=_____.(n为正整数).
三、解答题(共8题,共72分)
17.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
18.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.
(1)求反比例函数和一次函数的解析式;
(2)请连结,并求出的面积;
(3)直接写出当时,的解集.
19.(8分)如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
20.(8分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元)
1
2
2.5
3
5
yA(万元)
0.4
0.8
1
1.2
2
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
21.(8分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.
(1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);
①;②;③;④;⑤;⑥;
(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;
(3)如果与相似,但面积不相等,求此时正方形的边长.
22.(10分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.
23.(12分)计算:+-2〡+6tan30°
24.如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC.
(1)求证:四边形ABCD是矩形;
(1)若△GEF的面积为1.
①求四边形BCFE的面积;
②四边形ABCD的面积为 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:①如图,∵抛物线开口方向向下,∴a<1.
∵对称轴x,∴<1.∴ab>1.故①正确.
②如图,当x=1时,y<1,即a+b+c<1.故②正确.
③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
④如图,当x=﹣1时,y>1,即a﹣b+c>1,
∵抛物线与y轴交于正半轴,∴c>1.
∵b<1,∴c﹣b>1.
∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
⑤如图,对称轴,则.故⑤正确.
综上所述,正确的结论是①②③④⑤,共5个.故选D.
2、B
【解析】
试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
试题解析:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
则OC′=3,
故C′的坐标是(3,0).
故选B.
考点:坐标与图形变化-旋转.
3、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb<0,
∴k、b异号。
①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
故选:D
【点睛】
此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
4、A
【解析】
观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.
5、D
【解析】
试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
考点:众数,中位数
点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
6、C
【解析】
将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
【详解】
解:6000万=6×1.
故选:C.
【点睛】
此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.
7、C
【解析】
由题意得,4−x⩾0,x−4⩾0,
解得x=4,则y=3,则=,
故选:C.
8、D
【解析】
根据特殊角三角函数值,可得答案.
【详解】
解:tan45°=1,
故选D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
9、C
【解析】
观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m
10、B
【解析】
试题解析:∵菱形ABCD的对角线
根据勾股定理,
设菱形的高为h,
则菱形的面积
即
解得
即菱形的高为cm.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(-2,7).
【解析】
解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,
∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC,
∴∠OAB+∠DAF=90°,
∴∠ABO=∠DAF,
∴△AOB∽△DFA,
∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(﹣3,0),B(0,6),
∴AB:AD=3:2,OA=3,OB=6,
∴DF=2,AF=4,
∴OF=OA+AF=7,
∴点D的坐标为:(﹣7,2),
∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).
设直线BC的解析式为:y=kx+b,
则解得:
∴直线BC的解析式为:y=﹣x+6②,
联立①②得: 或(舍去),
∴点E的坐标为:(﹣2,7).
故答案为(﹣2,7).
12、(2,3)
【解析】
试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).
考点:二次函数的性质
13、
【解析】
【分析】根据二次根式的运算法则进行计算即可求出答案.
【详解】
=
=,
故答案为.
【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.
14、(0,-1)
【解析】
∵a=2,b=0,c=-1,∴-=0, ,
∴抛物线的顶点坐标是(0,-1),
故答案为(0,-1).
15、1
【解析】
本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.
【详解】
∵△BDE是正三角形,
∴∠DBE=60°;
∵在△ABC中,∠C=∠ABC,BE⊥AC,
∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;
∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,
解得∠C=75°,
∴∠ABC=75°,
∴∠A=30°,
∵∠AED=90°-∠DEB=30°,
∴∠A=∠AED,
∴DE=AD=1,
∴BE=DE=1,
故答案为:1.
【点睛】
本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.
16、.
【解析】
观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1…,n次幂加1;分子的变化为:3、5、7、9…2n+1.
【详解】
解:∵a1=,a2=,a3=,a4=,a5=,…,
∴an=,
故答案为:.
【点睛】
本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.
三、解答题(共8题,共72分)
17、(1)见解析;(2)1
【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
【详解】
(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
又∵EF⊥AC,∴平行四边形AECF是菱形;
(2)设AF=x.
∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
【点睛】
本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
18、(1),;(2)4;(3).
【解析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
【详解】
解:(1)如图,连接,,
∵⊙C与轴,轴相切于点D,,且半径为,
,,
∴四边形是正方形,
,
,点,
把点代入反比例函数中,
解得:,
∴反比例函数解析式为:,
∵点在反比例函数上,
把代入中,可得,
,
把点和分别代入一次函数中,
得出:,
解得:,
∴一次函数的表达式为:;
(2)如图,连接,
,点的横坐标为,
的面积为:;
(3)由,根据图象可知:当时,的解集为:.
【点睛】
本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
19、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
【解析】
分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
详解: (1)已知抛物线经过,,
∴,解得,
∴所求抛物线的解析式为.
(2)∵,,∴,,
可得旋转后点的坐标为.
当时,由得,
可知抛物线过点.
∴将原抛物线沿轴向下平移1个单位长度后过点.
∴平移后的抛物线解析式为:.
(3)∵点在上,可设点坐标为,
将配方得,∴其对称轴为.由题得B1(0,1).
①当时,如图①,
∵,
∴,
∴,
此时,
∴点的坐标为.
②当时,如图②,
同理可得,
∴,
此时,
∴点的坐标为.
综上,点的坐标为或.
点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
20、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
【详解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
21、(1)④⑤;(2);(3)或.
【解析】
(1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,,设正方形的边长为x,则,,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;
(2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;
(3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所以,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长.
【详解】
(1)如图,作于M,交于N,
在中,∵,
设,则,
∵,
∴,解得,
∴,,
设正方形的边长为x,
在中,∵,
∴,
∴,
在中,,
∴为定值;
∵,
∴,
∴为定值;
在中,,
而在变化,
∴在变化,在变化,
∴在变化,
所以和是始终保持不变的量;
故答案为:④⑤
(2)∵MN⊥AP,DEFG是正方形,
∴四边形为矩形,
∴,
∵,
∴,
∴,
即,
∴
(3)∵,与相似,且面积不相等,
∴,即,
∴,
当点P在点F点右侧时,AP=AF+PF==,
∴,
解得,
当点P在点F点左侧时,,
∴,
解得,
综上所述,正方形的边长为或.
【点睛】
本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.
22、(1)见解析;(2)△ADF的面积是.
【解析】
试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.
试题解析:
(1)证明:连接OD,CD,
∵AC是⊙O的直径,
∴∠CDA=90°=∠BDC,
∵OE∥AB,CO=AO,
∴BE=CE,
∴DE=CE,
∵在△ECO和△EDO中
,
∴△ECO≌△EDO,
∴∠EDO=∠ACB=90°,
即OD⊥DE,OD过圆心O,
∴ED为⊙O的切线.
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,
则OM∥FN,∠OMN=90°,
∵OE∥AB,
∴四边形OMFN是矩形,
∴FN=OM,
∵DE=4,OC=3,由勾股定理得:OE=5,
∴AC=2OC=6,
∵OE∥AB,
∴△OEC∽△ABC,
∴,
∴,
∴AB=10,
在Rt△BCA中,由勾股定理得:BC==8,
sin∠BAC=,
即 ,
OM==FN,
∵cos∠BAC=,
∴AM=
由垂径定理得:AD=2AM=,
即△ADF的面积是AD×FN=××=.
答:△ADF的面积是.
【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.
23、10 +
【解析】
根据实数的性质进行化简即可计算.
【详解】
原式=9-1+2-+6×
=10-
=10 +
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
24、(1)证明见解析;(1)①16;②14;
【解析】
(1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
(1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
【详解】
(1)证明:∵GB=GC,
∴∠GBC=∠GCB,
在平行四边形ABCD中,
∵AD∥BC,AB=DC,AB∥CD,
∴GB-GE=GC-GF,
∴BE=CF,
在△ABE与△DCF中,
,
∴△ABE≌△DCF,
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=∠D=90°,
∴四边形ABCD是矩形;
(1)①∵EF∥BC,
∴△GFE∽△GBC,
∵EF=AD,
∴EF=BC,
∴,
∵△GEF的面积为1,
∴△GBC的面积为18,
∴四边形BCFE的面积为16,;
②∵四边形BCFE的面积为16,
∴(EF+BC)•AB=×BC•AB=16,
∴BC•AB=14,
∴四边形ABCD的面积为14,
故答案为:14.
【点睛】
本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
四川省达州市渠县渠县中学2023-2024学年八年级(上)期末数学试题(含解析): 这是一份四川省达州市渠县渠县中学2023-2024学年八年级(上)期末数学试题(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省渠县第三中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份四川省渠县第三中学2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了|﹣3|的值是,下列方程中,没有实数根的是等内容,欢迎下载使用。
四川省达州市渠县重点中学2021-2022学年中考二模数学试题含解析: 这是一份四川省达州市渠县重点中学2021-2022学年中考二模数学试题含解析,共21页。试卷主要包含了下列说法正确的是,如果,那么的值为等内容,欢迎下载使用。