|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年浙江省温州市各校中考数学押题试卷含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省温州市各校中考数学押题试卷含解析01
    2021-2022学年浙江省温州市各校中考数学押题试卷含解析02
    2021-2022学年浙江省温州市各校中考数学押题试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省温州市各校中考数学押题试卷含解析

    展开
    这是一份2021-2022学年浙江省温州市各校中考数学押题试卷含解析,共20页。试卷主要包含了计算的结果为,下列实数中,结果最大的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
    A.–999×(52+49)=–999×101=–100899
    B.–999×(52+49–1)=–999×100=–99900
    C.–999×(52+49+1)=–999×102=–101898
    D.–999×(52+49–99)=–999×2=–1998
    2.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是(  )
    A.3 B. C. D.
    3.已知点,为是反比例函数上一点,当时,m的取值范围是( )
    A. B. C. D.
    4.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    5.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )
    A. B.2 C.2 D.4
    6.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    7.如图是由四个小正方体叠成的一个几何体,它的左视图是( )

    A. B. C. D.
    8.下列实数中,结果最大的是(  )
    A.|﹣3| B.﹣(﹣π) C. D.3
    9.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为(  )
    A.172 B.171 C.170 D.168
    10.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为(  )
    A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
    11.下列各数中是有理数的是(  )
    A.π B.0 C. D.
    12.在实数,,,中,其中最小的实数是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    14.若关于x的分式方程有增根,则m的值为_____.
    15.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.

    16.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”

    17.已知一个多边形的每一个内角都是,则这个多边形是_________边形.
    18.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.

    20.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.

    21.(6分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
    22.(8分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;
    (2)化简:(a﹣)÷ .
    23.(8分)解方程组:.
    24.(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
    (1)求证:BF=CD;
    (2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.

    25.(10分)如图,已知抛物线经过,两点,顶点为.

    (1)求抛物线的解析式;
    (2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
    (3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
    26.(12分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.
    (1)求k的值;
    (1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.

    27.(12分)解不等式组,
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得_____;
    (2)解不等式②,得_____;
    (3)把不等式①和②的解集在数轴上表示出来;
    (4)原不等式组的解集为_____.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据乘法分配律和有理数的混合运算法则可以解答本题.
    【详解】
    原式=-999×(52+49-1)=-999×100=-1.
    故选B.
    【点睛】
    本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
    2、A
    【解析】
    根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.
    故选A.
    点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.
    3、A
    【解析】
    直接把n的值代入求出m的取值范围.
    【详解】
    解:∵点P(m,n),为是反比例函数y=-图象上一点,
    ∴当-1≤n<-1时,
    ∴n=-1时,m=1,n=-1时,m=1,
    则m的取值范围是:1≤m<1.
    故选A.
    【点睛】
    此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.
    4、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    5、B
    【解析】
    圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
    【详解】
    解:∵圆内接正六边形的边长是1,
    ∴圆的半径为1.
    那么直径为2.
    圆的内接正方形的对角线长为圆的直径,等于2.
    ∴圆的内接正方形的边长是1.
    故选B.
    【点睛】
    本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
    6、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
    7、A
    【解析】
    试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
    考点:简单组合体的三视图.
    8、B
    【解析】
    正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
    【详解】
    根据实数比较大小的方法,可得
    <|-3|=3<-(-π),
    所以最大的数是:-(-π).
    故选B.
    【点睛】
    此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
    9、C
    【解析】
    先把所给数据从小到大排列,然后根据中位数的定义求解即可.
    【详解】
    从小到大排列:
    150,164,168,168,,172,176,183,185,
    ∴中位数为:(168+172)÷2=170.
    故选C.
    【点睛】
    本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
    10、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),
    先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
    所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
    故选:A.
    【点睛】
    本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
    11、B
    【解析】
    【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
    【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
    B、0是有理数,故本选项正确;
    C、是无理数,故本选项错误;
    D、是无理数,故本选项错误,
    故选B.
    【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
    12、B
    【解析】
    由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.
    【详解】
    解:∵0,-2,1,中,-2<0<1<,
    ∴其中最小的实数为-2;
    故选:B.
    【点睛】
    本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    【点睛】
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    14、±
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘x-3,得
    x-2(x-3)=m2,
    ∵原方程增根为x=3,
    ∴把x=3代入整式方程,得m=±.
    【点睛】
    解决增根问题的步骤:
    ①确定增根的值;
    ②化分式方程为整式方程;
    ③把增根代入整式方程即可求得相关字母的值.
    15、
    【解析】
    根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
    【详解】
    解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
    ∴tan∠AED=tanB=.
    故答案为:.
    【点睛】
    本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
    16、1
    【解析】
    本题主要考查了三角形的内角和定理.
    解:根据三角形的内角和可知填:1.
    17、十
    【解析】
    先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
    【详解】
    解:180°﹣144°=36°,360°÷36°=1,∴这个多边形的边数是1.
    故答案为十.
    【点睛】
    本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
    18、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.

    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
    【解析】
    (1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
    (2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
    【详解】
    (1)解:设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)作PD⊥AO交AC于D

    设AC解析式y=kx+b

    解得:
    ∴AC解析式为y=x+4.
    设P(t,﹣t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当t=﹣2时,△ACP最大面积4.
    【点睛】
    本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
    20、(1)证明见解析;(2)证明见解析;(3)4.
    【解析】
    试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
    (2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
    (3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
    试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
    (2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
    (3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.

    点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    21、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去B景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40-8-14-4-6=8(人),
    补全条形统计图为:

    扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=280,
    所以估计“醉美旅游景点B“的学生人数为280人.
    【点睛】
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
    22、(1);(2);
    【解析】
    (1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
    (2)根据分式的减法和除法可以解答本题.
    【详解】
    解:(1)原式


    (2)原式


    【点睛】
    本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
    23、;;.
    【解析】
    分析:
    把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
    详解:
    由方程可得,,;
    则原方程组转化为(Ⅰ)或 (Ⅱ),
    解方程组(Ⅰ)得,
    解方程组(Ⅱ)得 ,
    ∴原方程组的解是 .
    点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.
    24、(1)证明见解析;(2)12
    【解析】
    (1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
    (2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
    【详解】
    解:(1)证明:∵ 四边形ABCD为平行四边形,
    ∴ AB=CD,∠FAD=∠AFB
    又∵ AF平分∠BAD,
    ∴ ∠FAD=∠FAB
    ∴ ∠AFB=∠FAB
    ∴ AB=BF
    ∴ BF=CD
    (2)解:由题意可证△ABF为等边三角形,点E是AF的中点
    在Rt△BEF中,∠BFA=60°,BE=,
    可求EF=2,BF=4
    ∴ 平行四边形ABCD的周长为12
    25、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
    【解析】
    分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
    (2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
    可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
    (3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
    详解: (1)已知抛物线经过,,
    ∴,解得,
    ∴所求抛物线的解析式为.
    (2)∵,,∴,,
    可得旋转后点的坐标为.
    当时,由得,
    可知抛物线过点.
    ∴将原抛物线沿轴向下平移1个单位长度后过点.
    ∴平移后的抛物线解析式为:.
    (3)∵点在上,可设点坐标为,
    将配方得,∴其对称轴为.由题得B1(0,1).
    ①当时,如图①,

    ∵,
    ∴,
    ∴,
    此时,
    ∴点的坐标为.
    ②当时,如图②,

    同理可得,
    ∴,
    此时,
    ∴点的坐标为.
    综上,点的坐标为或.
    点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
    26、(1)k=11;(1)C(2,0).
    【解析】
    试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
    (1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.
    试题解析:
    (1)∵点A在直线y=2x上,其横坐标为1.
    ∴y=2×1=6,∴A(1,6),
    把点A(1,6)代入,得,
    解得:k=11;
    (1)由(1)得:,
    ∵点B为此反比例函数图象上一点,其纵坐标为2,
    ∴,解得x= 4,∴B(4,2),
    ∵CB∥OA,
    ∴设直线BC的解析式为y=2x+b,
    把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,
    ∴直线BC的解析式为y=2x﹣9,
    当y=0时,2x﹣9=0,解得:x=2,
    ∴C(2,0).
    27、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.
    【解析】
    根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
    【详解】
    解:(1)解不等式①,得x>1;
    (1)解不等式②,得 x≤1;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为:1<x≤1.
    【点睛】
    本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.

    相关试卷

    浙江省温州市2019年中考数学押题卷(含解析): 这是一份浙江省温州市2019年中考数学押题卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023届浙江省温州市各校中考数学模拟精编试卷含解析: 这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。

    2023届浙江省温州市各校中考数学模拟精编试卷含解析: 这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map