![2021-2022学年浙江省宁波市雅戈尔中学中考四模数学试题含解析01](http://img-preview.51jiaoxi.com/2/3/13314018/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年浙江省宁波市雅戈尔中学中考四模数学试题含解析02](http://img-preview.51jiaoxi.com/2/3/13314018/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年浙江省宁波市雅戈尔中学中考四模数学试题含解析03](http://img-preview.51jiaoxi.com/2/3/13314018/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年浙江省宁波市雅戈尔中学中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20 B.15 C.10 D.5
2.下列四个图形中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
3.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A. B. C. D.
4.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )
A.25本 B.20本 C.15本 D.10本
5.2018的相反数是( )
A. B.2018 C.-2018 D.
6.不等式组的解集为.则的取值范围为( )
A. B. C. D.
7.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
8.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是 ( )
A. B.
C. D.
9.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是( )
A.若这5次成绩的中位数为8,则x=8
B.若这5次成绩的众数是8,则x=8
C.若这5次成绩的方差为8,则x=8
D.若这5次成绩的平均成绩是8,则x=8
10.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )
A. B. C. D.
11.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).
A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10
C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为16
12.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是( )
A.3 B.﹣1 C.﹣3 D.﹣2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.
14.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为______.
15.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
16.计算:____________
17.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.
18.计算:|﹣5|﹣=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
20.(6分)计算:
21.(6分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当C,B两点均在直线MN的上方时,
①直接写出线段AE,BF与CE的数量关系.
②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.
22.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
23.(8分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
求证:AB=DE
24.(10分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
25.(10分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.
(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);
(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.
26.(12分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.
求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.
27.(12分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
2、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
4、C
【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
【详解】
解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
根据题意,得:,
解得:,
答:甲种笔记本买了25本,乙种笔记本买了15本.
故选C.
【点睛】
本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
5、C
【解析】
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
【详解】2018与-2018只有符号不同,
由相反数的定义可得2018的相反数是-2018,
故选C.
【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
6、B
【解析】
求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
【详解】
解:解不等式组,得.
∵不等式组的解集为x<2,
∴k+1≥2,
解得k≥1.
故选:B.
【点睛】
本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
7、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
8、D
【解析】
根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.
【详解】
解:有两种情况,
当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;
当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;
根据选项可知,D选项满足条件.
故选D.
【点睛】
本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.
9、D
【解析】
根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
【详解】
A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
故选D.
【点睛】
本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
10、B
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
∵a<0,
∴抛物线的开口方向向下,
故第三个选项错误;
∵c<0,
∴抛物线与y轴的交点为在y轴的负半轴上,
故第一个选项错误;
∵a<0、b>0,对称轴为x=>0,
∴对称轴在y轴右侧,
故第四个选项错误.
故选B.
11、D
【解析】
首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,
由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.
①当三边为3、4、1时,其周长为3+4+1=13;
②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;
③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;
④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;
综上所述,三角形周长最小为11,最大为11,
故选:D.
【点睛】
本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.
12、C
【解析】
试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.
【考点】根与系数的关系;一元二次方程的解.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=1,故答案为1.
14、y=2x2﹣6x+2
【解析】
由AAS证明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.
【详解】
如图所示:
∵四边形ABCD是边长为1的正方形,
∴∠A=∠D=20°,AD=1.
∴∠1+∠2=20°,
∵四边形EFGH为正方形,
∴∠HEF=20°,EH=EF.
∴∠1+∠1=20°,
∴∠2=∠1,
在△AHE与△BEF中
,
∴△DHE≌△AEF(AAS),
∴DE=AF=x,DH=AE=1-x,
在Rt△AHE中,由勾股定理得:
EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;
即y=2x2-6x+2(0<x<1),
故答案为y=2x2-6x+2.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.
15、30°
【解析】
试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.
∵OA=OC,∴∠C=∠OAC=30°.
∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.
∴∠BOD=60°-30°=30°.
16、y
【解析】
根据幂的乘方和同底数幂相除的法则即可解答.
【详解】
【点睛】
本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.
17、4或1
【解析】
先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
【详解】
①如图:因为AC==2,
点A是斜边EF的中点,
所以EF=2AC=4,
②如图:
因为BD==5,
点D是斜边EF的中点,
所以EF=2BD=1,
综上所述,原直角三角形纸片的斜边长是4或1,
故答案是:4或1.
【点睛】
此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.
18、1
【解析】
分析:直接利用二次根式以及绝对值的性质分别化简得出答案.
详解:原式=5-3
=1.
故答案为1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)∠CDE=2∠A.
【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
【详解】
(1)∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,由勾股定理得:
AB=
=,
∴AO=AB=.
∵OD⊥AB,
∴∠AOE=∠ACB=90°,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴,
∴OE=
=.
(2)∠CDE=2∠A.理由如下:
连结OC,
∵OA=OC,
∴∠1=∠A,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∴∠2+∠CDE=90°,
∵OD⊥AB,
∴∠2+∠3=90°,
∴∠3=∠CDE.
∵∠3=∠A+∠1=2∠A,
∴∠CDE=2∠A.
考点:切线的性质;探究型;和差倍分.
20、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
21、(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=.
【解析】
(1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;
②利用①中结论即可解决问题;
(2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解决问题;
【详解】
解:(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,
∵CE⊥MN,CD⊥BF,
∴∠CEA=∠D=90°,
∵CE⊥MN,CD⊥BF,BF⊥MN,
∴四边形CEFD为矩形,
∴∠ECD=90°,
又∵∠ACB=90°,
∴∠ACB-∠ECB=∠ECD-∠ECB,
即∠ACE=∠BCD,
又∵△ABC为等腰直角三角形,
∴AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(AAS),
∴AE=BD,CE=CD,
又∵四边形CEFD为矩形,
∴四边形CEFD为正方形,
∴CE=EF=DF=CD,
∴AE+BF=DB+BF=DF=EC.
②由①可知:AF+BF=AE+EF+BF
=BD+EF+BF
=DF+EF
=2CE,
(2)AF-BF=2CE
图2中,过点C作CG⊥BF,交BF延长线于点G,
∵AC=BC
可得∠AEC=∠CGB,
∠ACE=∠BCG,
在△CBG和△CAE中,
,
∴△CBG≌△CAE(AAS),
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF-BF=2CE;
(3)如图3,过点C做CD⊥BF,交FB的于点D,
∵AC=BC
可得∠AEC=∠CDB,
∠ACE=∠BCD,
在△CBD和△CAE中,
,
∴△CBD≌△CAE(AAS),
∴AE=BD,
∵AF=AE-EF,
∴AF=BD-CE=BF-FD-CE=BF-2CE,
∴BF-AF=2CE.
∵AF=3,BF=7,
∴CE=EF=2,AE=AF+EF=5,
∵FG∥EC,
∴,
∴,
∴FG=.
【点睛】
本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
22、(1)袋子中白球有2个;(2)见解析, .
【解析】
(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
【详解】
解:(1)设袋子中白球有x个,
根据题意得:,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
【点睛】
此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.
23、证明见解析.
【解析】
证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
24、(1);(1) ;(3);
【解析】
(1)直接根据概率公式求解;
(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
【详解】
解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
(1)画树状图为:
共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
所以一个径赛项目和一个田赛项目的概率P1==;
(3)两个项目都是径赛项目的结果数为6,
所以两个项目都是径赛项目的概率P1==.
故答案为.
考点:列表法与树状图法.
25、(1)b=;(2)详见解析.
【解析】
(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;
(2)先求出农场从A、B公司购买铵肥的费用,再求出农场从A、B公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x的解析式是一次函数,根据m的取值范围不同分两类讨论,可得出结论.
【详解】
(1)有图象可得,函数图象分为两部分,设第一段函数图象为y=k1x,代入点(4,12),即12=k1×4,可得k1=3,设第二段函数图象为y=k2x+c,代入点(4,12)、(8,32)可列出二元一次方程组,解得:k2=5,c=-8,所以函数解析式为:b=;
(2)农场从A公司购买铵肥的费用为750x元,因为B公司有铵肥7吨,1≤x≤3,故农场从B公司购买铵肥的重量(8-x)肯定大于5吨,农场从B公司购买铵肥的费用为700(8-x)元,所以购买铵肥的总费用=750x+700(8-x)=50x+5600(0≤x≤3);农场从A公司购买铵肥的运输费用为3xm元,且满足1≤x≤3,农场从B公司购买铵肥的运输费用为[5(8-x)-8]×2m元,所以购买铵肥的总运输费用为3xm+[5(8-x)-8]×2m=-7mx+64m元,因此农场购买铵肥的总费用y=50x+5600-7mx+64m=(50-7m)x+5600+64m(1≤x≤3),分一下两种情况进行讨论;
①当50-7m≥0即m≤时,y随x的增加而增加,则x=1使得y取得最小值即总费用最低,此时农场铵肥的购买方案为:从A公司购买1吨,从B公司购买7吨,
②当50-7m<0即m>时,y随x的增加而减少,则x=3使得y取得最小值即总费用最低,此时农场铵肥的购买方案为:从A公司购买3吨,从B公司购买5吨.
【点睛】
本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式.
26、(1)见解析,(2)CF=cm.
【解析】
(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;
(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.
【详解】
证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,
∴∠CDB+∠DBC=90°.
∵CE⊥BD,∴∠DBC+∠ECB=90°.
∴∠ECB=∠CDB.
∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
∴∠CFB=∠BCF
∴BF=BC
(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).
在Rt△BCD中,由勾股定理得BD=.
又∵BD•CE=BC•DC,
∴CE=.
∴BE=.
∴EF=BF﹣BE=3﹣.
∴CF=cm.
【点睛】
本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.
27、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【解析】
【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
(3)先判断出△AEP≌△FBP,即可得出结论.
【详解】(1)依题意作出图形如图①所示;
(2)EB是平分∠AEC,理由:
∵四边形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵点E是CD的中点,
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE,
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BCE=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC==,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
浙江省宁波市海曙区雅戈尔中学等四校2022-2023学年八年级上学期期中考试数学试卷(含解析): 这是一份浙江省宁波市海曙区雅戈尔中学等四校2022-2023学年八年级上学期期中考试数学试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年浙江省宁波市海曙区雅戈尔中学等四校七年级(上)期中数学试卷(含解析): 这是一份2022-2023学年浙江省宁波市海曙区雅戈尔中学等四校七年级(上)期中数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022届浙江省宁波市慈溪中学中考联考数学试题含解析: 这是一份2022届浙江省宁波市慈溪中学中考联考数学试题含解析,共21页。试卷主要包含了下列各式计算正确的是,对于函数y=,下列说法正确的是,﹣18的倒数是等内容,欢迎下载使用。