|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年泰州市智堡实验校中考数学模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年泰州市智堡实验校中考数学模试卷含解析01
    2021-2022学年泰州市智堡实验校中考数学模试卷含解析02
    2021-2022学年泰州市智堡实验校中考数学模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年泰州市智堡实验校中考数学模试卷含解析

    展开
    这是一份2021-2022学年泰州市智堡实验校中考数学模试卷含解析,共23页。试卷主要包含了一、单选题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知一个多边形的内角和是1080°,则这个多边形是( )
    A.五边形 B.六边形 C.七边形 D.八边形
    2.下列式子中,与互为有理化因式的是(  )
    A. B. C. D.
    3.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    4.下列立体图形中,主视图是三角形的是( )
    A. B. C. D.
    5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    6.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是(  )

    A.SAS B.SSS C.AAS D.ASA
    7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(  )

    A.①②④ B.①②⑤ C.②③④ D.③④⑤
    8.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的( )

    A.外心 B.内心 C.三条中线的交点 D.三条高的交点
    9.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )

    A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0
    10.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.

    12.因式分解:=_______________.
    13.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则 =______.

    14.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).
    ①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
    ②如果方程M有两根符号相同,那么方程N的两根符号也相同;
    ③如果方程M和方程N有一个相同的根,那么这个根必是x=1;
    ④如果5是方程M的一个根,那么是方程N的一个根.
    15.一元二次方程x2﹣4=0的解是._________
    16.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.

    三、解答题(共8题,共72分)
    17.(8分)计算:
    18.(8分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
    (1)求∠EAD的余切值;
    (2)求的值.

    19.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)

    20.(8分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

    (1)求抛物线的解析式;
    (2)当0<t≤8时,求△APC面积的最大值;
    (3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
    21.(8分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.

    22.(10分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
    花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
    (1)第一批花每束的进价是多少元.
    (2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
    23.(12分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
    由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    24.某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:
    (1)收回问卷最多的一天共收到问卷_________份;
    (2)本次活动共收回问卷共_________份;
    (3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?
    (4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据多边形的内角和=(n﹣2)•180°,列方程可求解.
    【详解】
    设所求多边形边数为n,
    ∴(n﹣2)•180°=1080°,
    解得n=8.
    故选D.
    【点睛】
    本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
    2、B
    【解析】
    直接利用有理化因式的定义分析得出答案.
    【详解】
    ∵()(,)
    =12﹣2,
    =10,
    ∴与互为有理化因式的是:,
    故选B.
    【点睛】
    本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
    3、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    4、A
    【解析】
    考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
    【详解】
    A、圆锥的主视图是三角形,符合题意;
    B、球的主视图是圆,不符合题意;
    C、圆柱的主视图是矩形,不符合题意;
    D、正方体的主视图是正方形,不符合题意.
    故选A.
    【点睛】
    主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
    5、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
    6、B
    【解析】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.
    【详解】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',
    故选:B.
    【点睛】
    本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.
    7、A
    【解析】
    由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
    【详解】
    ①∵对称轴在y轴右侧,
    ∴a、b异号,
    ∴ab<2,故正确;
    ②∵对称轴
    ∴2a+b=2;故正确;
    ③∵2a+b=2,
    ∴b=﹣2a,
    ∵当x=﹣1时,y=a﹣b+c<2,
    ∴a﹣(﹣2a)+c=3a+c<2,故错误;
    ④根据图示知,当m=1时,有最大值;
    当m≠1时,有am2+bm+c≤a+b+c,
    所以a+b≥m(am+b)(m为实数).
    故正确.
    ⑤如图,当﹣1<x<3时,y不只是大于2.
    故错误.
    故选A.
    【点睛】
    本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
    抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
    系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
    左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
    物线与y轴交点,抛物线与y轴交于(2,c).
    8、B
    【解析】
    利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.
    【详解】
    解:如图,过点作于,于,于.

    图1

    (夹在平行线间的距离相等).
    如图:过点作于,作于E,作于.

    由题意可知: ,,,
    ∴ ,
    ∴图中的点是三角形三个内角的平分线的交点,
    点是的内心,
    故选B.
    【点睛】
    本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.
    9、A
    【解析】
    解:∵二次函数的图象开口向上,∴a>1.
    ∵对称轴在y轴的左边,∴<1.∴b>1.
    ∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.
    ∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.
    把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,
    ∵b>1,∴b=2﹣a>1.∴a<2.
    ∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.
    故选A.
    【点睛】
    本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.
    10、B
    【解析】
    根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
    【详解】
    解:主视图,如图所示:

    故选B.
    【点睛】
    本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
    【详解】
    ∵四边形ABCD、CEFG均为正方形,
    ∴CD=AD=3,CG=CE=5,
    ∴DG=2,
    在Rt△DGF中, DF==,
    ∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
    ∴∠FDG=∠IDA.
    又∵∠DAI=∠DGF,
    ∴△DGF∽△DAI,
    ∴,即,解得:DI=,
    ∴矩形DFHI的面积是=DF•DI=,
    故答案为:.
    【点睛】
    本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.
    12、a(a+b)(a-b).
    【解析】
    分析:本题考查的是提公因式法和利用平方差公式分解因式.
    解析:原式= a(a+b)(a-b).
    故答案为a(a+b)(a-b).
    13、3﹣
    【解析】
    首先设点B的横坐标,由点B在抛物线y1=x2(x≥0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DE∥AC,得出E的坐标,即可得出DE和AB,进而得解.
    【详解】
    设点B的横坐标为,则
    ∵平行于x轴的直线AC

    又∵CD平行于y轴

    又∵DE∥AC


    ∴=3﹣
    【点睛】
    此题主要考查抛物线中的坐标求解,关键是利用平行的性质.
    14、①②④
    【解析】
    试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
    ∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;
    ②∵和符号相同,和符号也相同,
    ∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
    ③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
    ∵a≠c,
    ∴x2=1,解得:x=±1,错误;
    ④∵5是方程M的一个根,
    ∴25a+5b+c=0,
    ∴a+b+c=0,
    ∴是方程N的一个根,正确.
    故正确的是①②④.
    15、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    16、
    【解析】
    如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.
    【详解】
    如图,连接CO并延长,交AB于点F;

    ∵AC=BC,
    ∴CF⊥AB(垂径定理的推论);
    ∵BD是⊙O的直径,
    ∴AD⊥AB;设⊙O的半径为r;
    ∴AD∥OC,△ADE∽△COE,
    ∴AD:CO=DE:OE,
    而DE=3,AD=5,OE=r-3,CO=r,
    ∴5:r=3:(r-3),
    解得:r=,
    故答案为.
    【点睛】
    该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.

    三、解答题(共8题,共72分)
    17、-1
    【解析】
    先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
    【详解】
    原式=1﹣4﹣+1﹣=﹣1.
    【点睛】
    本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
    18、(1)∠EAD的余切值为;(2)=.
    【解析】
    (1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;
    (2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.
    【详解】
    (1)∵BD⊥AC,
    ∴∠ADE=90°,
    Rt△ADB中,AB=13,cos∠BAC=,
    ∴AD=5, 由勾股定理得:BD=12,
    ∵E是BD的中点,
    ∴ED=6,
    ∴∠EAD的余切==;
    (2)过D作DG∥AF交BC于G,
    ∵AC=8,AD=5, ∴CD=3,
    ∵DG∥AF,
    ∴=,
    设CD=3x,AD=5x,
    ∵EF∥DG,BE=ED,
    ∴BF=FG=5x,
    ∴==.

    【点睛】
    本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.
    19、这棵树CD的高度为8.7米
    【解析】
    试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.
    试题解析:∵∠CBD=∠A+∠ACB,
    ∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
    ∴∠A=∠ACB,
    ∴BC=AB=10(米).
    在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
    答:这棵树CD的高度为8.7米.
    考点:解直角三角形的应用
    20、(1);(2)12;(3)t=或t=或t=1.
    【解析】
    试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.
    试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,
    ∴x1+x2=8,
    由.
    解得:.
    ∴B(2,0)、C(6,0)
    则4m﹣16m+4m+2=0,
    解得:m=,
    ∴该抛物线解析式为:y=;.
    (2)可求得A(0,3)
    设直线AC的解析式为:y=kx+b,


    ∴直线AC的解析式为:y=﹣x+3,
    要构成△APC,显然t≠6,分两种情况讨论:
    当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),

    ∵P(t,),∴PF=,
    ∴S△APC=S△APF+S△CPF
    =
    =
    =,
    此时最大值为:,
    ②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),
    ∵P(t,),∴PM=,
    ∴S△APC=S△APF﹣S△CPF=
    =
    =,
    当t=8时,取最大值,最大值为:12,
    综上可知,当0<t≤8时,△APC面积的最大值为12;
    (3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,
    Q(t,3),P(t,),
    ①当2<t≤6时,AQ=t,PQ=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=2(舍),
    ②当t>6时,AQ′=t,PQ′=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=1,
    ∴t=或t=或t=1.

    考点:二次函数综合题.
    21、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    22、(1)2元;(2)第二批花的售价至少为元;
    【解析】
    (1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
    【详解】
    (1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
    根据题意得:,
    解得:,
    经检验:是原方程的解,且符合题意.
    答:第一批花每束的进价是2元.
    (2)由可知第二批菊花的进价为元.
    设第二批菊花的售价为m元,
    根据题意得:,
    解得:.
    答:第二批花的售价至少为元.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    23、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    24、18 60分
    【解析】
    分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;
    (2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;
    (3)根据概率公式计算即可;
    (4)分别计算第4天,第6天的获奖率后比较即可.
    详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;
    (2)2÷[4÷(2+3+4+6+4+1)]=60份;
    (3)抽到第4天回收问卷的概率是;
    (4)第4天收回问卷获奖率,第6天收回问卷获奖率.
    ∵,
    ∴第6天收回问卷获奖率高.
    点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.

    相关试卷

    2023-2024学年江苏省泰州市智堡实验学校数学九上期末监测模拟试题含答案: 这是一份2023-2024学年江苏省泰州市智堡实验学校数学九上期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,等内容,欢迎下载使用。

    2023-2024学年泰州市智堡实验学校九年级数学第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年泰州市智堡实验学校九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图所示几何体的主视图是,若反比例函数y= 的图象经过点等内容,欢迎下载使用。

    江苏省泰州市智堡实验学校2023-2024学年数学八上期末达标检测试题含答案: 这是一份江苏省泰州市智堡实验学校2023-2024学年数学八上期末达标检测试题含答案,共7页。试卷主要包含了把通分,下列计算正确的是,已知,则值为,已知是完全平方式,则的值是,下列计算中正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map