2023-2024学年泰州市智堡实验学校九年级数学第一学期期末达标检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是( )
A.①②B.①③C.②③D.②④
2.若点M在抛物线的对称轴上,则点M的坐标可能是( )
A.(3,-4)B.(-3,0)C.(3,0)D.(0,-4)
3.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.任意画一个三角形,其内角和是360°
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
4.四边形为平行四边形,点在的延长线上,连接交于点,则下列结论正确的是( )
A.B.C.D.
5.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是( )
A.B.
C.D.
6.某中学组织初三学生足球比赛,以班为单位,每两班之间都比赛一场,计划安排场比赛,则参加比赛的班级有( )
A.个B.个C.个D.个
7.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为( )
A.2:5B.3:5C.9:25D.4:25
8.如图所示几何体的主视图是( )
A.B.C.D.
9.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度年市政府共投资亿元人民币建设廉租房万平方米,预计到年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率都为,可列方程( )
A.B.
C.D.
10.若反比例函数y= 的图象经过点(2,﹣1),则k的值为( )
A.﹣2B.2C.﹣D.
二、填空题(每小题3分,共24分)
11.设、是一元二次方程的两实数根,则的值为_________
12.已知两个数的差等于2,积等于15,则这两个数中较大的是 .
13.若,则锐角α=_____.
14.如图,点是圆周上异于的一点,若,则_____.
15.如图,四边形ABCD是⊙O的外切四边形,且AB=5,CD=6,则四边形ABCD的周长为_______.
16.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=_____.
17.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.
18.二中岗十字路口南北方向的红绿灯设置为:红灯30秒,绿灯60秒,黄灯3秒,小明由南向北经过路口遇到红灯的概率为______.
三、解答题(共66分)
19.(10分)某配餐公司有A,B两种营养快餐。一天,公司售出两种快餐共640份,获利2160元。两种快餐的成本价、销售价如下表。
(1)求该公司这一天销售A、B两种快餐各多少份?
(2)为扩大销售,公司决定第二天对一定数量的A、B两种快餐同时举行降价促销活动。降价的A、B两种快餐的数量均为第一天销售A、B两种快餐数量的2倍,且A种快餐按原销售价的九五折出售,若公司要求这些快餐当天全部售出后,所获的利润不少于3280元,那么B种快餐最低可以按原销售价打几折出售?
20.(6分) “江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.
(1)求购进一件甲种礼品、一件乙种礼品各需多少元;
(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?
21.(6分)如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C.
(1)求∠BCO的度数;
(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;
(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.
22.(8分)某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,四个等级进行评分,然后根据统计结果绘制了如下两幅不 完整的统计图,请根据图中的信息,解答下列问题:
(1)求一共抽取了多少份作品?
(2)此次抽取的作品中等级为的作品有 份,并补全条形统计图;
(3)扇形统计图中等级为的扇形圆心角的度数为 ;
(4)若该校共征集到 800 份作品,请估计等级为的作品约有多少份?
23.(8分)解方程:
(1)
(2)
24.(8分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.
(1)求一次函数和反比例函数的关系式;
(2)直接写出当x<0时,kx+b﹣<0的解集;
(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.
25.(10分)解方程:4x2﹣2x﹣1=1.
26.(10分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?
(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、D
5、C
6、C
7、C
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、27
12、5
13、45°
14、或
15、1
16、35°
17、.
18、
三、解答题(共66分)
19、(1)该公司这一天销售A、B两种快餐各400份,240份;(2)B种快餐最低可以按原销售价打8.5折出售
20、(1)购进一件甲种礼品需要50元,一件乙种礼品需70元;(2)最多可购进20件甲种礼品.
21、(1)∠BCO=45°;(2)A(﹣4,1);(3)点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).
22、(1)120份;(2)48,图见解析;(3);(4)240份
23、(1),;(2)x1=2,x2=-1.
24、(1)y=﹣x﹣,y=﹣;(2)﹣3<x<0;(3)点M的坐标为(﹣2,0),AM+BM的最小值为3.
25、,
26、(1)应该多种5棵橙子树;(2)增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.
A种快餐
B种快餐
成本价
5元/份
6元/份
销售价
8元/份
10元/份
深圳锦华实验学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份深圳锦华实验学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程x2-x=0的根是等内容,欢迎下载使用。
2023-2024学年江苏省泰州市智堡实验学校数学九上期末监测模拟试题含答案: 这是一份2023-2024学年江苏省泰州市智堡实验学校数学九上期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,等内容,欢迎下载使用。
2023-2024学年贵州省水城实验学校数学九年级第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年贵州省水城实验学校数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。