2021-2022学年四川省乐山市第七中学中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
3.如果,那么( )
A. B. C. D.
4.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
5.实数﹣5.22的绝对值是( )
A.5.22 B.﹣5.22 C.±5.22 D.
6.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
7.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
8.下列运算中,正确的是 ( )
A.x2+5x2=6x4 B.x3 C. D.
9.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是( )
A.﹣4 B.﹣2 C.1 D.2
10.一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.
12.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.
13.关于的一元二次方程有两个相等的实数根,则________.
14.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.
15.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
16.要使分式有意义,则x的取值范围为_________.
17.二次函数y=(x﹣2m)2+1,当m<x<m+1时,y随x的增大而减小,则m的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?
(3)请你求出学校在第二次购买活动中最多需要多少资金?
19.(5分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
20.(8分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
21.(10分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)
22.(10分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)
23.(12分)计算:sin30°•tan60°+..
24.(14分)计算: .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
【详解】
∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=AB,FE=AB,
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中, ,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD∽△BCE,
∴,即BC•AD=AB•BE,
∵∠AEB=90°,AE=BE,
∴AB=BE
BC•AD=BE•BE,
∴BC•AD=AE2;③正确;
设AE=a,则AB=a,
∴CE=a﹣a,
∴=,
即 ,
∵AF=AB,
∴ ,
∴S△BEC≠S△ADF,故④错误,
故选:C.
【点睛】
本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
2、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
3、B
【解析】
试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.
故选B
点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.
4、D
【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【详解】
解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选D.
【点睛】
本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
5、A
【解析】
根据绝对值的性质进行解答即可.
【详解】
实数﹣5.1的绝对值是5.1.
故选A.
【点睛】
本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
6、C
【解析】
根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;
当x=1时,y<0,即a+b+c<0,则②错误;
根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;
根据函数与x轴有两个交点可得:-4ac>0,则④正确.
故选C.
【点睛】
本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.
7、B
【解析】
先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.
【详解】
∵ 抛物线y=-x2+mx的对称轴为直线x=2,
∴,
解之:m=4,
∴y=-x2+4x,
当x=2时,y=-4+8=4,
∴顶点坐标为(2,4),
∵ 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,
当x=1时,y=-1+4=3,
当x=2时,y=-4+8=4,
∴ 3<t≤4,
故选:B
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
8、C
【解析】
分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.
详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;
D.,本项错误.故选C.
点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.
9、B
【解析】
求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.
【详解】
解方程组,
把①代入②得:=﹣2x﹣4,
整理得:x2+2x+1=0,
解得:x=﹣1,
∴y=﹣2,
交点坐标是(﹣1,﹣2),
∴a=﹣1,b=﹣2,
∴=﹣1﹣1=﹣2,
故选B.
【点睛】
本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.
10、A
【解析】
利用待定系数法即可求解.
【详解】
设函数的解析式是y=kx,
根据题意得:2k=﹣3,解得:k=.
∴ 函数的解析式是:.
故选A.
二、填空题(共7小题,每小题3分,满分21分)
11、6
【解析】
试题分析:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;
考点:多边形内角与外角.
12、﹣1
【解析】
先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
【详解】
在正方形ABCD中,AB=BC,∠ABC=∠BCD,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,
∵∠CBF+∠ABF=90°
∴∠BAE+∠ABF=90°
∴∠AGB=90°
∴点G在以AB为直径的圆上,
由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
∵正方形ABCD,BC=2,
∴AO=1=OG
∴OD=,
∴DG=−1,
故答案为−1.
【点睛】
本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
13、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
14、30°
【解析】
试题解析:∵关于x的方程有两个相等的实数根,
∴
解得:
∴锐角α的度数为30°;
故答案为30°.
15、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.
【详解】
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
16、x≠1
【解析】
由题意得
x-1≠0,
∴x≠1.
故答案为x≠1.
17、m>1
【解析】
由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+1<2m,即m>1.
故答案为m>1.
点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.
【解析】
试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.
试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元
,解得
(2) 设第二次购买A种足球m个,则购买B种足球(50-m)个
,解得25≤m≤27
∵m为整数 ∴m=25、26、27
(3) ∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72
∴当购买B种足球越多时,费用越高 此时25×54+25×72=3150(元)
19、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.
【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.
(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;
(3)根据函数的图象和交点坐标即可求得.
【详解】
⑴把C(6,-1)代入,得.
则反比例函数的解析式为,
把代入,得,
∴点D的坐标为(-2,3).
⑵将C(6,-1)、D(-2,3)代入,得
,解得.
∴一次函数的解析式为,
∴点B的坐标为(0,2),点A的坐标为(4,0).
∴,
在在中,
∴.
⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值
【点睛】
此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.
20、43米
【解析】
作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=,列出方程即可解决问题.
【详解】
解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.
在Rt△ABD中,∵∠ADB=45°,
∴AB=BD=x,
在Rt△AEC中,
tan∠ACE==tan37.5°≈0.77,
∴=0.77,
解得x≈43,
答:“小雁塔”的高AB的长度约为43米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
21、塔CD的高度为37.9米
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.
试题解析:作BE⊥CD于E.
可得Rt△BED和矩形ACEB.
则有CE=AB=16,AC=BE.
在Rt△BED中,∠DBE=45°,DE=BE=AC.
在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.
∵16+DE=DC,
∴16+AC=AC,
解得:AC=8+8=DE.
所以塔CD的高度为(8+24)米≈37.9米,
答:塔CD的高度为37.9米.
22、潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD= = =
在Rt△BCD中,BD=CD•tan68°,
∴325+x= •tan68°
解得:x≈100米,
∴潜艇C离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频
23、
【解析】
试题分析:把相关的特殊三角形函数值代入进行计算即可.
试题解析:原式=.
24、
【解析】
根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可
【详解】
原式
.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
新疆吉木乃初级中学2021-2022学年中考数学仿真试卷含解析: 这是一份新疆吉木乃初级中学2021-2022学年中考数学仿真试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列说法中正确的是等内容,欢迎下载使用。
四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析: 这是一份四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022学年重庆市中学中考数学仿真试卷含解析: 这是一份2021-2022学年重庆市中学中考数学仿真试卷含解析,共19页。试卷主要包含了定义,-5的相反数是等内容,欢迎下载使用。