|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年四川省成都市金牛区蜀西实验校中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2021-2022学年四川省成都市金牛区蜀西实验校中考数学模拟预测试卷含解析01
    2021-2022学年四川省成都市金牛区蜀西实验校中考数学模拟预测试卷含解析02
    2021-2022学年四川省成都市金牛区蜀西实验校中考数学模拟预测试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省成都市金牛区蜀西实验校中考数学模拟预测试卷含解析

    展开
    这是一份2021-2022学年四川省成都市金牛区蜀西实验校中考数学模拟预测试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(  )
    A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
    2.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
    A.①②③ B.①③⑤ C.②③④ D.②④⑤
    3.的相反数是(  )
    A. B.2 C. D.
    4.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为(  )
    A.m> B.m C.m= D.m=
    5.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )
    A. B.2 C.2 D.4
    6.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是(  )
    A. B. C. D.
    7.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

    A. B. C. D.
    8.下列运算正确的是 ( )
    A.2+a=3 B. =
    C. D.=
    9.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为(  )

    A. B. C. D.
    10.下列各组单项式中,不是同类项的一组是( )
    A.和 B.和 C.和 D.和3
    11.下列运算结果正确的是(  )
    A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
    12.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是(  )

    A.2 B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
    14.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为___________.
    15.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.

    16.计算:sin30°﹣(﹣3)0=_____.
    17.计算的结果等于______________________.
    18.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)有这样一个问题:探究函数y=﹣2x的图象与性质.
    小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.
    下面是小东的探究过程,请补充完整:
    (1)函数y=﹣2x的自变量x的取值范围是_______;
    (2)如表是y与x的几组对应值
    x

    ﹣4
    ﹣3.5
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    3.5
    4

    y






    0


    m



    则m的值为_______;
    (3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
    (4)观察图象,写出该函数的两条性质________.

    20.(6分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
    (1)求新传送带AC的长度;
    (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)

    21.(6分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.

    (1)求二次函数的解析式;
    (2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
    (3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
    22.(8分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
    23.(8分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
    (1)求直线AB的函数关系式;
    (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
    (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由

    24.(10分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)

    25.(10分)先化简再求值:÷(﹣1),其中x=.
    26.(12分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
    (1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
    (2)分别求出这两个投资方案的最大年利润;
    (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
    27.(12分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上
    (1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;
    (2)画出将△ABC向右平移6个单位后得到的△A2B2C2;
    (3)在(1)中,求在旋转过程中△ABC扫过的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    180000=1.8×105,
    故选A.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、D
    【解析】
    根据实数的运算法则即可一一判断求解.
    【详解】
    ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
    故选D.
    3、D
    【解析】
    因为-+=0,所以-的相反数是.
    故选D.
    4、C
    【解析】
    试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
    ∴△=32-4×2m=9-8m=0,
    解得:m=.
    故选C.
    5、B
    【解析】
    圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
    【详解】
    解:∵圆内接正六边形的边长是1,
    ∴圆的半径为1.
    那么直径为2.
    圆的内接正方形的对角线长为圆的直径,等于2.
    ∴圆的内接正方形的边长是1.
    故选B.
    【点睛】
    本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
    6、A
    【解析】
    ∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
    ∴当他忘记了末位数字时,要一次能打开的概率是.
    故选A.
    7、D
    【解析】
    试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
    8、D
    【解析】
    根据整式的混合运算计算得到结果,即可作出判断.
    【详解】
    A、2与a 不是同类项,不能合并,不符合题意;
    B、 =,不符合题意;
    C、原式=,不符合题意;
    D、=,符合题意,
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    9、B
    【解析】
    阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
    【详解】
    由旋转可知AD=BD,
    ∵∠ACB=90°,AC=2,
    ∴CD=BD,
    ∵CB=CD,
    ∴△BCD是等边三角形,
    ∴∠BCD=∠CBD=60°,
    ∴BC=AC=2,
    ∴阴影部分的面积=2×2÷2−=2−.
    故答案选:B.
    【点睛】
    本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
    10、A
    【解析】
    如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.
    【详解】
    根据题意可知:x2y和2xy2不是同类项.
    故答案选:A.
    【点睛】
    本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.
    11、C
    【解析】
    根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
    【详解】
    A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
    B、(-a2)•a3=-a5,此选项计算错误;
    C、(-2x2)3=-8x6,此选项计算正确;
    D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
    故选:C.
    【点睛】
    本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
    12、C
    【解析】
    当⊙C与AD相切时,△ABE面积最大,
    连接CD,
    则∠CDA=90°,
    ∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
    ∴CD=1,AC=2+1=3,
    ∴AD==2,
    ∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
    ∴△AOE∽△ADC,

    即,∴OE=,
    ∴BE=OB+OE=2+
    ∴S△ABE=
    BE?OA=×(2+)×2=2+
    故答案为C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
    【详解】
    设大和尚x人,小和尚y人,由题意可得

    故答案为.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
    14、或.
    【解析】
    MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.
    解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,

    ∴MN是AB的中垂线.
    ∴NB=NA.
    ∴∠B=∠BAN,
    ∵AB=AC
    ∴∠B=∠C.
    设∠B=x°,则∠C=∠BAN=x°.
    1)当AN=NC时,∠CAN=∠C=x°.
    则在△ABC中,根据三角形内角和定理可得:4x=180,
    解得:x=45°则∠B=45°;
    2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;
    3)当CA=CN时,∠NAC=∠ANC=.
    在△ABC中,根据三角形内角和定理得到:x+x+x+=180,
    解得:x=36°.
    故∠B的度数为 45°或36°.
    15、8π﹣8
    【解析】
    连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.
    【详解】
    连接EF、OC交于点H,
    则OH=2,
    ∴FH=OH×tan30°=2,
    ∴菱形FOEC的面积=×4×4=8,
    扇形OAB的面积==8π,
    则阴影部分的面积为8π﹣8,
    故答案为8π﹣8.

    【点睛】
    本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.
    16、-
    【解析】
    sin30°=,a0=1(a≠0)
    【详解】
    解:原式=-1
    =-
    故答案为:-.
    【点睛】
    本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.
    17、
    【解析】
    根据完全平方式可求解,完全平方式为
    【详解】

    【点睛】
    此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
    18、2
    【解析】
    首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.
    【详解】
    解:连接BD,
    ∵AB是⊙O的直径,
    ∴∠C=∠D=90°,
    ∵∠BAC=60°,弦AD平分∠BAC,
    ∴∠BAD=∠BAC=30°,
    ∴在Rt△ABD中,AB==4,
    ∴在Rt△ABC中,AC=AB•cos60°=4×=2.
    故答案为2.


    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.
    【解析】
    (1)没有限定要求,所以x为任意实数,
    (2)把x=3代入函数解析式即可,
    (3)描点,连线即可解题,
    (4)看图确定极点坐标,即可找到增减区间.
    【详解】
    解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;
    故答案为任意实数;
    (2)把x=3代入y=﹣2x得,y=﹣;
    故答案为﹣;
    (3)如图所示;
    (4)根据图象得,①当x<﹣2时,y随x的增大而增大;
    ②当x>2时,y随x的增大而增大.
    故答案为①当x<﹣2时,y随x的增大而增大;
    ②当x>2时,y随x的增大而增大.

    【点睛】
    本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.
    20、(1)5.6
    (2)货物MNQP应挪走,理由见解析.
    【解析】
    (1)如图,作AD⊥BC于点D

    Rt△ABD中,
    AD=ABsin45°=4
    在Rt△ACD中,∵∠ACD=30°
    ∴AC=2AD=4
    即新传送带AC的长度约为5.6米.
    (2)结论:货物MNQP应挪走.
    在Rt△ABD中,BD=ABcos45°=4
    在Rt△ACD中,CD=ACcos30°=
    ∴CB=CD—BD=
    ∵PC=PB—CB ≈4—2.1=1.9<2
    ∴货物MNQP应挪走.
    21、(1);(2)P点坐标为, ;(3) 或或或.
    【解析】
    (1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
    (2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
    (3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
    【详解】
    解:(1)∵A(-1,0),在上,
    ,解得,
    ∴二次函数的解析式为;
    (2)在中,令可得,解得或,
    ,且,
    ∴经过、两点的直线为,
    设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,


    ∴当时,四边形的面积最大,此时P点坐标为,
    ∴四边形的最大面积为;
    (3),
    ∴对称轴为,
    ∴可设点坐标为,
    ,,
    ,,,
    为直角三角形,
    ∴有、和三种情况,
    ①当时,则有,即,解得或,此时点坐标为或;
    ②当时,则有,即,解得,此时点坐标为;
    ③当时,则有,即,解得,此时点坐标为;
    综上可知点的坐标为或或或.
    【点睛】
    本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
    22、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
    【解析】
    (1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
    (2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
    【详解】
    (1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
    故答案为(20+2x),(40-x);
    (2)、根据题意可得:(20+2x)(40-x)=1200,
    解得:
    即每件童装降价10元或20元时,平均每天盈利1200元;
    (3)、(20+2x)(40-x)=2000, ,
    ∵此方程无解,
    ∴不可能盈利2000元.
    【点睛】
    本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
    23、(1);(2) (0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.
    【解析】
    (1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.
    (2)用t表示P、M、N 的坐标,由等式得到函数关系式.
    (3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.
    【详解】
    解:(1)x=0时,y=1,
    ∴点A的坐标为:(0,1),
    ∵BC⊥x轴,垂足为点C(3,0),
    ∴点B的横坐标为3,
    当x=3时,y=,
    ∴点B的坐标为(3,),
    设直线AB的函数关系式为y=kx+b, ,
    解得,,
    则直线AB的函数关系式
    (2)当x=t时,y=t+1,
    ∴点M的坐标为(t,t+1),
    当x=t时,
    ∴点N的坐标为
    (0≤t≤3);
    (3)若四边形BCMN为平行四边形,则有MN=BC,
    ∴,
    解得t1=1,t2=2,
    ∴当t=1或2时,四边形BCMN为平行四边形,
    ①当t=1时,MP=,PC=2,
    ∴MC==MN,此时四边形BCMN为菱形,
    ②当t=2时,MP=2,PC=1,
    ∴MC=≠MN,此时四边形BCMN不是菱形.
    【点睛】
    本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.
    24、不满足安全要求,理由见解析.
    【解析】
    在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
    【详解】
    解:施工方提供的设计方案不满足安全要求,理由如下:
    在Rt△ABC中,AC=15m,∠ABC=45°,
    ∴BC==15m.
    在Rt△EFG中,EG=15m,∠EFG=37°,
    ∴GF=≈=20m.
    ∵EG=AC=15m,AC⊥BC,EG⊥BC,
    ∴EG∥AC,
    ∴四边形EGCA是矩形,
    ∴GC=EA=2m,
    ∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
    ∴施工方提供的设计方案不满足安全要求.
    25、
    【解析】
    分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    详解:原式=
    =
    =
    =
    当时,原式==.
    点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    26、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.
    【解析】
    (1)根据题意直接得出y1与y2与x的函数关系式即可;
    (2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;
    (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.
    【详解】
    解:(1)由题意得:
    y1=(120﹣a)x(1≤x≤125,x为正整数),
    y2=100x﹣0.5x2(1≤x≤120,x为正整数);
    (2)①∵40<a<100,∴120﹣a>0,
    即y1随x的增大而增大,
    ∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)
    ②y2=﹣0.5(x﹣100)2+10,
    ∵a=﹣0.5<0,
    ∴x=100时,y2最大值=10(万元);
    (3)∵由110﹣125a>10,
    ∴a<80,
    ∴当40<a<80时,选择方案一;
    由110﹣125a=10,得a=80,
    ∴当a=80时,选择方案一或方案二均可;
    由110﹣125a<10,得a>80,
    ∴当80<a<100时,选择方案二.
    考点:二次函数的应用.
    27、(1)(1)如图所示见解析;(3)4π+1.
    【解析】
    (1)根据旋转的性质得出对应点位置,即可画出图形;
    (1)利用平移的性质得出对应点位置,进而得出图形;
    (3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.
    【详解】
    (1)如图所示,△A1BC1即为所求;

    (1)如图所示,△A1B1C1即为所求;
    (3)由题可得,△ABC扫过的面积==4π+1.
    【点睛】
    考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.

    相关试卷

    2023-2024学年四川省成都市金牛区蜀西实验学校数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年四川省成都市金牛区蜀西实验学校数学九上期末学业水平测试模拟试题含答案,共9页。试卷主要包含了下列事件中,随机事件是,抛物线,下列方程有两个相等的实数根是等内容,欢迎下载使用。

    四川省成都市金牛区蜀西实验学校2023-2024学年八上数学期末监测模拟试题含答案: 这是一份四川省成都市金牛区蜀西实验学校2023-2024学年八上数学期末监测模拟试题含答案,共7页。试卷主要包含了下列说法中正确的个数是,①实数和数轴上的点一一对应等内容,欢迎下载使用。

    2022-2023学年四川省成都市金牛区蜀西实验学校数学七下期末质量检测模拟试题含答案: 这是一份2022-2023学年四川省成都市金牛区蜀西实验学校数学七下期末质量检测模拟试题含答案,共6页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map