2021-2022学年四川省巴中学市南江县市级名校中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.的值是( )
A.1 B.﹣1 C.3 D.﹣3
2.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
3.下列命题是真命题的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.两条对角线相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.平行四边形既是中心对称图形,又是轴对称图形
4.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
5.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
6.下列计算正确的是
A. B. C. D.
7.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )
A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
8.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
9.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是( )
A.1 B.2 C.3 D.4
10.若△÷,则“△”可能是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若xay与3x2yb是同类项,则ab的值为_____.
12.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.
13.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.
14.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.
15.16的算术平方根是 .
16.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .
17.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.
三、解答题(共7小题,满分69分)
18.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
19.(5分)画出二次函数y=(x﹣1)2的图象.
20.(8分)(1)计算: ;
(2)解不等式组 :
21.(10分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.
(1)求出A,B两点的坐标;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
22.(10分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).
23.(12分)解不等式组:,并将它的解集在数轴上表示出来.
24.(14分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
2、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
3、C
【解析】
根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
【详解】
A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
C、两组对边分别相等的四边形是平行四边形.故本选项正确;
D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
故选:C.
【点睛】
考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
4、A
【解析】
将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.
【详解】
(1)当时,,此时,
∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;
(2)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;
(3)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;
(4)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;
故选A.
【点睛】
熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.
5、C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
6、B
【解析】
试题分析:根据合并同类项的法则,可知,故A不正确;
根据同底数幂的除法,知,故B正确;
根据幂的乘方,知,故C不正确;
根据完全平方公式,知,故D不正确.
故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
7、D
【解析】
分析:
根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
详解:
由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
又∵被调查学生总数为120人,
∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
综上所述,选项D中数据正确.
故选D.
点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
8、B
【解析】
先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,
故选B.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.
9、D
【解析】
如图连接OB、OD;
∵AB=CD,
∴=,故①正确
∵OM⊥AB,ON⊥CD,
∴AM=MB,CN=ND,
∴BM=DN,
∵OB=OD,
∴Rt△OMB≌Rt△OND,
∴OM=ON,故②正确,
∵OP=OP,
∴Rt△OPM≌Rt△OPN,
∴PM=PN,∠OPB=∠OPD,故④正确,
∵AM=CN,
∴PA=PC,故③正确,
故选D.
10、A
【解析】
直接利用分式的乘除运算法则计算得出答案.
【详解】
。
故选:A.
【点睛】
考查了分式的乘除运算,正确分解因式再化简是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
试题解析:∵xay与3x2yb是同类项,
∴a=2,b=1,
则ab=2.
12、8π﹣8
【解析】
连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.
【详解】
连接EF、OC交于点H,
则OH=2,
∴FH=OH×tan30°=2,
∴菱形FOEC的面积=×4×4=8,
扇形OAB的面积==8π,
则阴影部分的面积为8π﹣8,
故答案为8π﹣8.
【点睛】
本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.
13、(1,﹣2).
【解析】
若设M(x,y),则由题目中对“实际距离”的定义可得方程组:
3-x+1-y=y+1+x+1=1-x+3+y,
解得:x=1,y=-2,
则M(1,-2).
故答案为(1,-2).
14、1
【解析】
解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.
点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.
15、4
【解析】
正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根
∵
∴16的平方根为4和-4
∴16的算术平方根为4
16、.
【解析】
试题解析:∵原计划用的时间为:
实际用的时间为:
∴可列方程为:
故答案为
17、
【解析】
如图所示,过点作,交于点.
在菱形中,
∵,且,所以为等边三角形,
.
根据“等腰三角形三线合一”可得
,因为,所以.
在中,根据勾股定理可得,.
因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.
所以,所以,所以.
点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.
三、解答题(共7小题,满分69分)
18、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
【解析】
(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;
用待定系数法求出一次函数解析式,再代入进行运算即可.
【详解】
(1)汽车行驶400千米,剩余油量30升,
即加满油时,油量为70升.
(2)设,把点,坐标分别代入得,,
∴,当时,,即已行驶的路程为650千米.
【点睛】
本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.
19、见解析
【解析】
首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.
【详解】
列表得:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 4 | 1 | 0 | 1 | 4 | … |
如图:
.
【点睛】
此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.
20、(1);(2).
【解析】
(1)根据幂的运算与实数的运算性质计算即可.
(2)先整理为最简形式,再解每一个不等式,最后求其解集.
【详解】
(1)解:原式=
=
(2)解不等式①,得 .
解不等式②,得 .
∴ 原不等式组的解集为
【点睛】
本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.
21、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
【解析】
分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在⊙M上,那么C点必为抛物线对称轴与⊙O的交点;根据A、B的坐标可求出AB的长,进而可得到⊙M的半径及C点的坐标,再用待定系数法求解即可;
(3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理:
∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标.
本题解析:(1)对于直线,当时,;当时,
所以A(﹣8,0),B(0,﹣6);
(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,
∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),
设抛物线的解析式为y=a(x+4)²+2,
把B(0,﹣6)代入得16a+2=﹣6,解得a= ,
∴抛物线的解析式为 ,即;
(3)存在.
当y=0时, ,解得x,=﹣2,x,=﹣6,
∴D(﹣6,0),E(﹣2,0),
,
设P(t,-6),
∵
∴=20,
即||=1,当=-1,
解得, ,
此时P点坐标为(﹣4+,-1)或(﹣4﹣,-1);
当时 ,解得=﹣4+,=﹣4﹣;
此时P点坐标为(﹣4+,1)或(﹣4﹣,1).
综上所述,P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.
22、C点到地面AD的距离为:(2+2)m.
【解析】
直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.
【详解】
过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,
在Rt△ABE中,∵∠A=30°,AB=4m,
∴BE=2m,
由题意可得:BF∥AD,
则∠FBA=∠A=30°,
在Rt△CBF中,
∵∠ABC=75°,
∴∠CBF=45°,
∵BC=4m,
∴CF=sin45°•BC=
∴C点到地面AD的距离为:
【点睛】
考查解直角三角形,熟练掌握锐角三角函数是解题的关键.
23、-1≤x<4,在数轴上表示见解析.
【解析】
试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
试题解析:
,
由①得,x<4;
由②得,x⩾−1.
故不等式组的解集为:−1⩽x<4.
在数轴上表示为:
24、(1)详见解析;(2).
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.
试题解析:(1)如图:
,
所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);
(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.
四川省巴中学市南江县市级名校2021-2022学年中考五模数学试题含解析: 这是一份四川省巴中学市南江县市级名校2021-2022学年中考五模数学试题含解析,共27页。试卷主要包含了答题时请按要求用笔,若关于x的一元二次方程x,如图,已知,用尺规作图作等内容,欢迎下载使用。
山东东营市市级名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份山东东营市市级名校2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。
湖北省咸宁市市级名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份湖北省咸宁市市级名校2021-2022学年中考数学适应性模拟试题含解析,共20页。

