2021-2022学年四川省泸州市龙马潭区金龙中学中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为( )
A. B. C. D.
2.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )
A. B. C. D.
3.下列汽车标志中,不是轴对称图形的是( )
A. B. C. D.
4.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )
A.20 B.25 C.30 D.35
5.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
6.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.△ABC在正方形网格中的位置如图所示,则cosB的值为( )
A. B. C. D.2
8.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是( )
A.无实数根
B.有两个正根
C.有两个根,且都大于﹣3m
D.有两个根,其中一根大于﹣m
9.如图是一个空心圆柱体,其俯视图是( )
A. B. C. D.
10.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为
A.14 B.13 C.12 D.10
11.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于( )
A.5 B. C. D.7
12.下列计算,正确的是( )
A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:__________.
14.因式分解:2m2﹣8n2= .
15.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.
16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.
17.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:
价格/(元/kg)
12
10
8
合计/kg
小菲购买的数量/kg
2
2
2
6
小琳购买的数量/kg
1
2
3
6
从平均价格看,谁买得比较划算?( )
A.一样划算 B.小菲划算C.小琳划算 D.无法比较
18.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
20.(6分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
21.(6分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
求证:AP=BQ;当BQ= 时,求的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.
22.(8分)先化简,再求值:﹣÷,其中a=1.
23.(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
24.(10分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.
(1)求证:PB=BC;
(2)试判断四边形BOCD的形状,并说明理由.
25.(10分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M
(1)求a的值,并写出点B的坐标;
(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.
26.(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
求反比例函数和一次函数的解析式;直接写出当x>0时,的解集.点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
27.(12分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.
【详解】
连接OO′,作O′H⊥OA于H,
在Rt△AOB中,∵tan∠BAO==,
∴∠BAO=30°,
由翻折可知,∠BAO′=30°,
∴∠OAO′=60°,
∵AO=AO′,
∴△AOO′是等边三角形,
∵O′H⊥OA,
∴OH=,
∴OH′=OH=,
∴O′(,),
故选B.
【点睛】
本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.
2、A
【解析】
试题分析:从上面看是一行3个正方形.
故选A
考点:三视图
3、C
【解析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形,故错误;
B、是轴对称图形,故错误;
C、不是轴对称图形,故正确;
D、是轴对称图形,故错误.
故选C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
4、B
【解析】
设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
,,
∴,
∴当时,(亿),
∵400-375=25,
∴该行可贷款总量减少了25亿.
故选B.
5、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
6、D
【解析】
分析:根据题意得出a和b的正负性,从而得出点B所在的象限.
详解:∵点A在第三象限, ∴a<0,-b<0, 即a<0,b>0, ∴点B在第四象限,故选D.
点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.
7、A
【解析】
解:在直角△ABD中,BD=2,AD=4,则AB=,
则cosB=.
故选A.
8、A
【解析】
先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
【详解】
方程整理为,
△,
∵,
∴,
∴△,
∴方程没有实数根,
故选A.
【点睛】
本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
9、D
【解析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
该空心圆柱体的俯视图是圆环,如图所示:
故选D.
【点睛】
本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.
10、C
【解析】
∵平行四边形ABCD,
∴AD∥BC,AD=BC,AO=CO,
∴∠EAO=∠FCO,
∵在△AEO和△CFO中,
,
∴△AEO≌△CFO,
∴AE=CF,EO=FO=1.5,
∵C四边形ABCD=18,∴CD+AD=9,
∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.
故选C.
【点睛】
本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.
11、A
【解析】
连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到 ,即2R= = .
【详解】
解:如图,
连接AO并延长到E,连接BE.设AE=2R,则
∠ABE=90°,∠AEB=∠ACB;
∵AD⊥BC于D点,AC=5,DC=3,
∴∠ADC=90°,
∴AD=,
∴
在Rt△ABE与Rt△ADC中,
∠ABE=∠ADC=90°,∠AEB=∠ACB,
∴Rt△ABE∽Rt△ADC,
∴,
即2R= = ;
∴⊙O的直径等于.
故答案选:A.
【点睛】
本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.
12、C
【解析】
解:A.故错误;
B. 故错误;
C.正确;
D.
故选C.
【点睛】
本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式,
故答案为:
【点睛】
本题考查提公因式,熟练掌握运算法则是解题关键.
14、2(m+2n)(m﹣2n).
【解析】
试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.
解:2m2﹣8n2,
=2(m2﹣4n2),
=2(m+2n)(m﹣2n).
考点:提公因式法与公式法的综合运用.
15、k<2且k≠1
【解析】
试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,
∴k-1≠0且△=(-2)2-4(k-1)>0,
解得:k<2且k≠1.
考点:1.根的判别式;2.一元二次方程的定义.
16、1
【解析】
分析:根据同时同地的物高与影长成正比列式计算即可得解.
详解:设这栋建筑物的高度为xm,
由题意得,,
解得x=1,
即这栋建筑物的高度为1m.
故答案为1.
点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.
17、C
【解析】
试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.
考点:平均数的计算.
18、1.
【解析】
根据二次函数的性质列出不等式和等式,计算即可.
【详解】
解:∵关于x的二次函数y=ax1+a1的最小值为4,
∴a1=4,a>0,
解得,a=1,
故答案为1.
【点睛】
本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1.
【解析】
根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.
【详解】
解:
=
=
=
=
当x=2时,原式==1.
【点睛】
本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.
20、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
【解析】
(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
(1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
(3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
【详解】
解:(1)连接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直径,
∴∠ADB=90°,
∴∠CDB=90°.
∵E为BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB为直径的⊙O的切线,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切线;
(1)∵S1=5 S1
∴S△ADB=1S△CDB
∴
∵△BDC∽△ADB
∴
∴DB1=AD•DC
∴
∴tan∠BAC==.
(3)∵tan∠BAC=
∴,得BC=AB
∵E为BC的中点
∴BE=AB
∵AE=3,
∴在Rt△AEB中,由勾股定理得
,解得AB=4
故⊙O的半径R=AB=1.
【点睛】
本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
21、(1)详见解析;(2);(3)4
(1) 连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.
(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD度数,由弧长公式即可求得答案.
(3)由直角三角形性质可得△APO的外心是OA的中点 ,结合题意可得OC取值范围.
【详解】
(1)证明:连接OQ.
∵AP、BQ是⊙O的切线,
∴OP⊥AP,OQ⊥BQ,
∴∠APO=∠BQO=90∘,
在Rt△APO和Rt△BQO中,
,
∴Rt△APO≌Rt△BQO,
∴AP=BQ.
(2)∵Rt△APO≌Rt△BQO,
∴∠AOP=∠BOQ,
∴P、O、Q三点共线,
∵在Rt△BOQ中,cosB=,
∴∠B=30∘,∠BOQ= 60° ,
∴OQ=OB=4,
∵∠COD=90°,
∴∠QOD= 90°+ 60° = 150°,
∴优弧QD的长=,
(3)解:设点M为Rt△APO的外心,则M为OA的中点,
∵OA=1,
∴OM=4,
∴当△APO的外心在扇形COD的内部时,OM<OC,
∴OC的取值范围为4<OC<1.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.
22、-1
【解析】
原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
解:原式=﹣•2(a﹣3)
=﹣==,
当a=1时,原式==﹣1.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
23、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
24、(1)见解析;(2)菱形
【解析】
试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;
(2)由对角线互相垂直平分的四边形是菱形证明即可.
试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;
(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.
在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.
25、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.
【解析】
(1)利用待定系数法即可解决问题;
(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.
【详解】
(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,
∴a=-1,
∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)
(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,
由解得x=
∴点C的横坐标为
∵MN=m-1,四边形MDEN是正方形,
∴C(,m-1)
把C点代入y=-(x-1)2+3,
得m-1=-+3,
解得m=3或-5(舍去)
∴平移后的解析式为y=-(x-3)2+3,
当点C在x轴的下方时,C(,1-m)
把C点代入y=-(x-1)2+3,
得1-m=-+3,
解得m=7或-1(舍去)
∴平移后的解析式为y=-(x-7)2+3
综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.
26、(1),y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(,0),见解析.
【解析】
(1)把A(1,4)代入y=,求出m=4,把B(4,n)代入y=,求出n=1,然后把把A(1,4)、(4,1)代入y=kx+b,即可求出一次函数解析式;
(2)根据图像解答即可;
(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.
【详解】
解:(1)把A(1,4)代入y=,得:m=4,
∴反比例函数的解析式为y=;
把B(4,n)代入y=,得:n=1,
∴B(4,1),
把A(1,4)、(4,1)代入y=kx+b,
得:,
解得:,
∴一次函数的解析式为y=﹣x+5;
(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;
∴当x>0时,kx+b<的解集为0<x<1或x>4;
(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,
∵B(4,1),
∴B′(4,﹣1),
设直线AB′的解析式为y=px+q,
∴,
解得,
∴直线AB′的解析式为,
令y=0,得,
解得x=,
∴点P的坐标为(,0).
【点睛】
本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.
27、证明见解析
【解析】
试题分析:证明三角形△ABC△DEF,可得=.
试题解析:
证明:∵=,
∴BC=EF,
∵⊥,⊥,
∴∠B=∠E=90°,AC=DF,
∴△ABC△DEF,
∴AB=DE.
2024年四川省泸州市龙马潭区中考数学一模试卷(含解析): 这是一份2024年四川省泸州市龙马潭区中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
四川省泸州市龙马潭区金龙中学2023-2024学年九年级数学第一学期期末复习检测试题含答案: 这是一份四川省泸州市龙马潭区金龙中学2023-2024学年九年级数学第一学期期末复习检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
四川省泸州市龙马潭区金龙中学2023-2024学年数学八上期末调研模拟试题含答案: 这是一份四川省泸州市龙马潭区金龙中学2023-2024学年数学八上期末调研模拟试题含答案,共7页。试卷主要包含了下列算式中,结果与相等的是,若函数是正比例函数,则的值是,若有意义,则x的取值范围是等内容,欢迎下载使用。