2021-2022学年江苏省无锡市宜兴和桥二中学中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.方程的解是( )
A. B. C. D.
2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )
A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
3.3的相反数是( )
A.﹣3 B.3 C. D.﹣
4. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
5.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
6.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
A. B. C. D.
7.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )
A. B. C.6 D.4
8.下列计算中正确的是( )
A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
9.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21 B.21或27 C.27 D.25
10.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,线段 AB 是⊙O 的直径,弦 CD⊥AB,AB=8,∠CAB=22.5°,则 CD的长等于___________________________.
12.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.
13.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
其中正确的是_____(填序号)
14.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.
15.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
16.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm2,围成的圆锥的底面半径为15cm,则这个圆锥的母线长为_____cm.
三、解答题(共8题,共72分)
17.(8分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
18.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为 米/分;
(4)求A、C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.
19.(8分)(1)计算:;
(2)化简:.
20.(8分)问题探究
(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为 ;
(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
问题解决
(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.
21.(8分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
22.(10分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
解决问题:
①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
23.(12分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)
24.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
按照解分式方程的步骤进行计算,注意结果要检验.
【详解】
解:
经检验x=4是原方程的解
故选:D
【点睛】
本题考查解分式方程,注意结果要检验.
2、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将度55000用科学记数法表示为5.5×1.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、A
【解析】
试题分析:根据相反数的概念知:1的相反数是﹣1.
故选A.
【考点】相反数.
4、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
5、D
【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
【详解】A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
故选D.
【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.
6、A
【解析】
圆柱体的底面积为:π×()2,
∴矿石的体积为:π×()2h= .
故答案为.
7、C
【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
8、C
【解析】
根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.
【详解】
A. x2+x2=2x2 ,故不正确;
B. x6÷x3=x3 ,故不正确;
C. (x3)2=x6 ,故正确;
D. x﹣1=,故不正确;
故选C.
【点睛】
本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.
9、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
10、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
连接 OC,如图所示,由直径 AB 垂直于 CD,利用垂径定理得到 E 为CD 的中点,即 CE=DE,由 OA=OC,利用等边对等角得到一对角相等,确定出三角形 COE 为等腰直角三角形,求出 CE 的长,进而得出 CD.
【详解】
连接 OC,如图所示:
∵AB 是⊙O 的直径,弦 CD⊥AB,
∴OC= AB=4,
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE 为△AOC 的外角,
∴∠COE=45°,
∴△COE 为等腰直角三角形,
∴CE= OC=,
∴CD=2CE=,
故答案为.
【点睛】
考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
12、11.
【解析】
试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,
∴这7天中最大的日温差是11℃.
考点:1.有理数大小比较;2.有理数的减法.
13、①②④
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH•PC,故④正确;
故答案是:①②④.
【点睛】
本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
14、1.
【解析】
首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.
【详解】
解:∵弦AC与半径OB互相平分,
∴OA=AB,
∵OA=OC,
∴△OAB是等边三角形,
∴∠AOB=60°,
∴∠AOC=1°,
故答案为1.
【点睛】
本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.
15、1.1
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
故答案为1.1.
16、1
【解析】
设这个圆锥的母线长为xcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•15•x=90π,然后解方程即可.
【详解】
解:设这个圆锥的母线长为xcm,
根据题意得•2π•15•x=90π,
解得x=1,
即这个圆锥的母线长为1cm.
故答案为1.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
三、解答题(共8题,共72分)
17、(1);(2)-1
【解析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
【详解】
解:(1)
①+②得,.
将时代入①得,,
∴.
(2)设“□”为a,
∵x、y是一对相反数,
∴把x=-y代入x-y=4得:-y-y=4,
解得:y=-2,
即x=2,
所以方程组的解是,
代入ax+y=-8得:2a-2=-8,
解得:a=-1,
即原题中“□”是-1.
【点睛】
本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
18、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
(3)由图可知甲、乙速度相同;
(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
【详解】
解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95﹣60)=35,
∴点F的坐标为(3,35),
则,解得,
∴线段EF所在直线的函数解析式为y=35x﹣70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距21米,
由题意得,60x+70﹣95x=21,解得,x=1.2,
前2分钟﹣3分钟,两机器人相距21米时,
由题意得,35x﹣70=21,解得,x=2.1.
4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
设线段GH所在直线的函数解析式为:y=kx+b,则,
,解得,
则直线GH的方程为y=x+,
当y=21时,解得x=4.6,
答:两机器人出发1.2分或2.1分或4.6分相距21米.
【点睛】
本题考查了一次函数的应用,读懂图像是解题关键..
19、(1)4+;(2).
【解析】
(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;
(3)根据分式的减法和除法可以解答本题.
【详解】
(1)
=4+1+|1﹣2×|
=4+1+|1﹣|
=4+1+﹣1
=4+;
(2)
=
=
=.
【点睛】
本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.
20、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
【解析】
(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
【详解】
(1)如图①,延长CD至G,使得DG=BE,
∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
∴△ABE≌△ADG,
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=45°,∠BAD=90°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
又∵AF=AF,
∴△AEF≌△AEG,
∴EF=GF=DG+DF=BE+DF,
故答案为:BE+DF=EF;
(2)存在.
在等边三角形ABC中,AB=BC,∠ABC=60°,
如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
∴△DBE是等边三角形,
∴DE=BD,
∴在△DCE中,DE<DC+CE=4+2=6,
∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
∴BD的最大值为6;
(3)存在.
如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
∵AB=BD,∠ABC=∠DBE,BC=BE,
∴△ABC≌△DBE,
∴DE=AC,
∵在等边三角形BCE中,EF⊥BC,
∴BF=BC=2,
∴EF=BF=×2=2,
以BC为直径作⊙F,则点D在⊙F上,连接DF,
∴DF=BC=×4=2,
∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.
【点睛】
本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
21、(1)证明见解析(2)4-3
【解析】
试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
∵△EAC是等边三角形, EO是AC边上中线,
∴EO⊥AC,即BD⊥AC,
∴平行四边形ABCD是是菱形.
(2) ∵平行四边形ABCD是是菱形,
∴AO=CO==4,DO=BO,
∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
在Rt△ABO中,由勾股定理可得:BO=3,
∴DO=BO=3,
在Rt△EAO中,由勾股定理可得:EO=4
∴ED=EO-DO=4-3.
22、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
【详解】
解:(1)将A,B点坐标代入,得
,
解得,
抛物线的解析式为y=;
(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
2m=﹣1,
即m=﹣;
故答案为﹣;
②AB的解析式为
当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
联立PA与抛物线,得,
解得(舍),,
即P(6,﹣14);
当PB⊥AB时,PB的解析式为y=﹣2x+3,
联立PB与抛物线,得,
解得(舍),
即P(4,﹣5),
综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
(3)如图:
,
∵M(t,﹣t2+t+1),Q(t, t+),
∴MQ=﹣t2+
S△MAB=MQ|xB﹣xA|
=(﹣t2+)×2
=﹣t2+,
当t=0时,S取最大值,即M(0,1).
由勾股定理,得
AB==,
设M到AB的距离为h,由三角形的面积,得
h==.
点M到直线AB的距离的最大值是.
【点睛】
本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
23、AD=38.28米.
【解析】
过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.
【详解】
过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,
由题意知,AD⊥CD
∴四边形BFDE为矩形
∴BF=ED
在Rt△ABE中,AE=AB•cos∠EAB
在Rt△BCF中,BF=BC•cos∠FBC
∴AD=AE+BF=20•cos60°+40•cos45°
=20×+40×=10+20
=10+20×1.414
=38.28(米).
即AD=38.28米.
【点睛】
解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
24、(1)画图见解析;(2)画图见解析;(3)20
【解析】
【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
【详解】(1)如图所示;
(2)如图所示;
(3)结合网格特点易得四边形AA1 B1 A2是正方形,
AA1=,
所以四边形AA1 B1 A2的面积为:=20,
故答案为20.
【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.
江苏省无锡市宜兴和桥二中学2022年中考数学五模试卷含解析: 这是一份江苏省无锡市宜兴和桥二中学2022年中考数学五模试卷含解析,共17页。试卷主要包含了不等式3x<2,计算等内容,欢迎下载使用。
江苏省无锡市2021-2022学年中考数学押题卷含解析: 这是一份江苏省无锡市2021-2022学年中考数学押题卷含解析,共23页。试卷主要包含了如图,直线与y轴交于点等内容,欢迎下载使用。
2021-2022学年江苏省无锡市新安中学中考数学押题试卷含解析: 这是一份2021-2022学年江苏省无锡市新安中学中考数学押题试卷含解析,共17页。试卷主要包含了一、单选题,实数 的相反数是,下列计算正确的有个,将抛物线绕着点,已知实数a、b满足,则,﹣6的倒数是等内容,欢迎下载使用。