|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省盐城市郭猛实验学校中考数学猜题卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省盐城市郭猛实验学校中考数学猜题卷含解析01
    2021-2022学年江苏省盐城市郭猛实验学校中考数学猜题卷含解析02
    2021-2022学年江苏省盐城市郭猛实验学校中考数学猜题卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省盐城市郭猛实验学校中考数学猜题卷含解析

    展开
    这是一份2021-2022学年江苏省盐城市郭猛实验学校中考数学猜题卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示的正方体的展开图是,已知∠BAC=45等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
    成绩
    人数(频数)
    百分比(频率)
    0


    5

    0.2
    10
    5

    15

    0.4
    20
    5
    0.1
    根据表中已有的信息,下列结论正确的是(  )
    A.共有40名同学参加知识竞赛
    B.抽到的同学参加知识竞赛的平均成绩为10分
    C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
    D.抽到同学参加知识竞赛成绩的中位数为15分
    2.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是( )
    A.0<r<3 B.r>4 C.0<r<5 D.r>5
    3.下列图形中,既是轴对称图形又是中心对称图形的是  
    A. B. C. D.
    4.如图所示的正方体的展开图是(  )

    A. B. C. D.
    5.据调查,某班20为女同学所穿鞋子的尺码如表所示,
    尺码(码)
    34
    35
    36
    37
    38
    人数
    2
    5
    10
    2
    1
    则鞋子尺码的众数和中位数分别是( )
    A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
    6.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )

    A. B.
    C. D.
    7.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(   )
    A.                      B.                      C.                      D.
    8.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
    A.0<x≤1 B.1≤x< C.0<x≤ D.x>
    9.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为( )

    A.150° B.140° C.130° D.120°
    10.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )

    A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.

    12.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为______cm .

    13.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.
    14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.
    15.当x ________ 时,分式 有意义.
    16.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.
    (1)求A,B两点的坐标及直线AC的函数表达式;
    (1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;
    (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.
    (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

    18.(8分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.

    19.(8分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
    20.(8分)如图①,AB是⊙O的直径,CD为弦,且AB⊥CD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F.
    (1)如图②,当F在EC的延长线上时,求证:∠AMD=∠FMC.
    (2)已知,BE=2,CD=1.
    ①求⊙O的半径;
    ②若△CMF为等腰三角形,求AM的长(结果保留根号).

    21.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
    22.(10分)已知,关于 x的一元二次方程(k﹣1)x2+x+3=0 有实数根,求k的取值范围.
    23.(12分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
    (1)求证:四边形ADEF是平行四边形;
    (2)若∠ABC=60°,BD=6,求DE的长.

    24.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.

    (1)在AB边上取点E,使AE=4,连接OA,OE;
    (2)在BC边上取点F,使BF=______,连接OF;
    (3)在CD边上取点G,使CG=______,连接OG;
    (4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
    【详解】
    ∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
    ∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
    ∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
    ∵0分同学10人,其频率为0.2,
    ∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
    ∵第25、26名同学的成绩为10分、15分,
    ∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
    故选:B.
    【点睛】
    本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
    2、D
    【解析】
    先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.
    【详解】
    ∵点P的坐标为(3,4),∴OP1.
    ∵点P(3,4)在⊙O内,∴OP<r,即r>1.
    故选D.
    【点睛】
    本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
    3、D
    【解析】
    根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
    B. 不是轴对称图形,是中心对称图形,故不符合题意;
    C. 是轴对称图形,但不是中心对称图形,故不符合题意;
    D. 既是轴对称图形又是中心对称图形,故符合题意.
    故选D.
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
    4、A
    【解析】
    有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
    【详解】
    把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
    故选A
    【点睛】
    本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
    5、D
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    数据36出现了10次,次数最多,所以众数为36,
    一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
    故选D.
    【点睛】
    考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
    6、B
    【解析】
    根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
    【详解】
    左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
    故选B.
    【点睛】
    本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
    7、B
    【解析】
    分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
    详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
    ∴b>0,
    ∵交点横坐标为1,
    ∴a+b+c=b,
    ∴a+c=0,
    ∴ac<0,
    ∴一次函数y=bx+ac的图象经过第一、三、四象限.
    故选B.
    点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.
    8、C
    【解析】
    如下图,设⊙O与射线AC相切于点D,连接OD,
    ∴∠ADO=90°,
    ∵∠BAC=45°,
    ∴△ADO是等腰直角三角形,
    ∴AD=DO=1,
    ∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,
    ∴x的取值范围是.
    故选C.

    9、B
    【解析】
    试题分析:如图,延长DC到F,则
    ∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.
    ∴∠ACD=180°-∠ECF=140°.
    故选B.

    考点:1.平行线的性质;2.平角性质.
    10、D
    【解析】
    分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
    详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
    故选D.
    点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、61
    【解析】
    分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
    详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
    如图②:AM2=AC2+CM2=92+4=85;
    如图:AM2=52+(4+2)2=61.

    ∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
    故答案为:61.
    点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
    12、20π
    【解析】
    解:=20πcm.故答案为20πcm.
    13、2
    【解析】
    侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.
    【详解】
    设母线长为x,根据题意得
    2πx÷2=2π×5,
    解得x=1.
    故答案为2.
    【点睛】
    本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.
    14、1.
    【解析】
    由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
    【详解】
    设白球个数为:x个,
    ∵摸到红色球的频率稳定在25%左右,
    ∴口袋中得到红色球的概率为25%,
    ∴=,
    解得:x=1,
    故白球的个数为1个.
    故答案为:1.
    【点睛】
    此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.
    15、x≠3
    【解析】
    由题意得
    x-3≠0,
    ∴x≠3.
    16、1.
    【解析】
    根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
    【详解】
    解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
    ∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
    故答案为1.

    【点睛】
    本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

    三、解答题(共8题,共72分)
    17、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).
    【解析】
    (1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;
    (1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;
    (3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;
    (4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.
    【详解】
    解:(1)令y=0,解得或x1=3,
    ∴A(﹣1,0),B(3,0);
    将C点的横坐标x=1代入y=x1﹣1x﹣3得
    ∴C(1,-3),
    ∴直线AC的函数解析式是
    (1)设P点的横坐标为x(﹣1≤x≤1),
    则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),
    ∵P点在E点的上方,
    ∴当时,PE的最大值
    △ACE的面积最大值
    (3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),
    连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,
    最小值
    求得M(1,﹣1),
    (4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,

    于是可得F1(1,0),F1(﹣3,0),
    如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,

    再根据|HA|=|CF|,
    求出
    综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.
    【点睛】
    属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.
    18、证明见解析.
    【解析】
    由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.
    【详解】
    ∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,
    ∴∠CAB=∠DAE,
    在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,
    ∴△ABC≌△AED,
    ∴BC=ED.
    19、(1),;(2)证明见解析.
    【解析】
    试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
    (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
    试题解析:(1)设方程的另一根为x1,
    ∵该方程的一个根为1,∴.解得.
    ∴a的值为,该方程的另一根为.
    (2)∵,
    ∴不论a取何实数,该方程都有两个不相等的实数根.
    考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
    20、(1)详见解析;(2)2;②1或
    【解析】
    (1)想办法证明∠AMD=∠ADC,∠FMC=∠ADC即可解决问题;
    (2)①在Rt△OCE中,利用勾股定理构建方程即可解决问题;
    ②分两种情形讨论求解即可.
    【详解】
    解:(1)证明:如图②中,连接AC、AD.

    ∵AB⊥CD,
    ∴CE=ED,
    ∴AC=AD,
    ∴∠ACD=∠ADC,
    ∵∠AMD=∠ACD,
    ∴∠AMD=∠ADC,
    ∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,
    ∴∠FMC=∠ADC,
    ∴∠FMC=∠ADC,
    ∴∠FMC=∠AMD.
    (2)解:①如图②﹣1中,连接OC.设⊙O的半径为r.

    在Rt△OCE中,∵OC2=OE2+EC2,
    ∴r2=(r﹣2)2+42,
    ∴r=2.
    ②∵∠FMC=∠ACD>∠F,
    ∴只有两种情形:MF=FC,FM=MC.
    如图③中,当FM=FC时,易证明CM∥AD,
    ∴,
    ∴AM=CD=1.

    如图④中,当MC=MF时,连接MO,延长MO交AD于H.

    ∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,
    ∴∠ADM=∠MAD,
    ∴MA=MD,
    ∴,
    ∴MH⊥AD,AH=DH,
    在Rt△AED中,AD=,
    ∴AH=,
    ∵tan∠DAE=,
    ∴OH=,
    ∴MH=2+,
    在Rt△AMH中,AM=.
    【点睛】
    本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积.
    21、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【解析】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.
    【详解】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得

    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得

    解得:,
    因为a是整数,
    所以a=6,7,8;
    则(10﹣a)=4,3,2;
    三种方案:
    ①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    22、0≤k≤且 k≠1.
    【解析】
    根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围.
    【详解】
    解:∵关于 x 的一元二次方程(k﹣1)x2+x+3=0 有实数根,
    ∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,
    解得:0≤k≤且 k≠1.
    ∴k 的取值范围为 0≤k≤且 k≠1.
    【点睛】
    本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    23、(1)证明见解析;(2).
    【解析】
    (1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;
    (2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.
    【详解】
    (1)证明:∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBE,
    ∵DE∥AB,
    ∴∠ABD=∠BDE,
    ∴∠DBE=∠BDE,
    ∴BE=DE;
    ∵BE=AF,
    ∴AF=DE;
    ∴四边形ADEF是平行四边形;
    (2)解:过点E作EH⊥BD于点H.
    ∵∠ABC=60°,BD是∠ABC的平分线,
    ∴∠ABD=∠EBD=30°,
    ∴DH=BD=×6=3,
    ∵BE=DE,
    ∴BH=DH=3,
    ∴BE==,
    ∴DE=BE=.

    【点睛】
    此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.
    24、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
    【解析】
    利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
    =HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
    【详解】
    (1)在AB边上取点E,使AE=4,连接OA,OE;
    (2)在BC边上取点F,使BF=3,连接OF;
    (3)在CD边上取点G,使CG=2,连接OG;
    (4)在DA边上取点H,使DH=1,连接OH.
    由于AE=EB+BF=FC+CG=GD+DH=HA.
    可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
    故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.

    相关试卷

    2022届江苏省盐城市大丰区城东实验中考数学猜题卷含解析: 这是一份2022届江苏省盐城市大丰区城东实验中考数学猜题卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图,空心圆柱体的左视图是,如图,一段抛物线,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年江苏省泰州市高港实验学校中考数学猜题卷含解析: 这是一份2021-2022学年江苏省泰州市高港实验学校中考数学猜题卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022学年江苏省庙头中学中考数学猜题卷含解析: 这是一份2021-2022学年江苏省庙头中学中考数学猜题卷含解析,共25页。试卷主要包含了下列计算正确的是,计算的正确结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map