|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年湖南省邵阳市新邵县达标名校初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年湖南省邵阳市新邵县达标名校初中数学毕业考试模拟冲刺卷含解析01
    2021-2022学年湖南省邵阳市新邵县达标名校初中数学毕业考试模拟冲刺卷含解析02
    2021-2022学年湖南省邵阳市新邵县达标名校初中数学毕业考试模拟冲刺卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省邵阳市新邵县达标名校初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年湖南省邵阳市新邵县达标名校初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了计算--|-3|的结果是,若一个正比例函数的图象经过A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
    A.个 B.个 C.个 D.个
    2.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
    A.平均数 B.中位数 C.众数 D.方差
    3.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
    A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣1
    4.下列判断错误的是(  )
    A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形
    C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形
    5.计算--|-3|的结果是(  )
    A.-1 B.-5 C.1 D.5
    6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是(  )

    A.60° B.50° C.40° D.30°
    7.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为(  )

    A.105° B.110° C.115° D.120°
    8.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    9.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是(  )
    A.m<﹣1 B.m<1 C.m>﹣1 D.m>1
    10.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
    A.2 B.8 C.﹣2 D.﹣8
    11.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    12.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是(  )

    A.75° B.65° C.60° D.50°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于的方程有增根,则______.
    14.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为 .

    15.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
    16.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为 .
    17.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
    18.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.
    A.如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为__________.

    B.比较__________的大小.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,菱形中,分别是边的中点.求证:.

    20.(6分)的除以20与18的差,商是多少?
    21.(6分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
    (1)若点D的横坐标为2,求抛物线的函数解析式;
    (2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
    (3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

    22.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
    (1)如图1,连接AB′.
    ①若△AEB′为等边三角形,则∠BEF等于多少度.
    ②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
    (2)如图2,连接CB′,求△CB′F周长的最小值.
    (3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.

    23.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.

    (1)求证:DE=DB:
    (2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
    (3)若BD=6,DF=4,求AD的长
    24.(10分)如图,在中,,且,,为的中点,于点,连结,.

    (1)求证:;
    (2)当为何值时,的值最大?并求此时的值.
    25.(10分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    26.(12分) (1)计算:(a-b)2-a(a-2b);
    (2)解方程:=.
    27.(12分)观察下列等式:
    第1个等式:a1=-1,
    第2个等式:a2=,
    第3个等式:a3==2-,
    第4个等式:a4=-2,

    按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.
    【详解】
    解不等式2x−a≥0,得:x≥,
    解不等式3x−b≤0,得:x≤,
    ∵不等式组的整数解仅有x=2、x=3,
    则1<≤2、3≤<4,
    解得:2<a≤4、9≤b<12,
    则a=3时,b=9、10、11;
    当a=4时,b=9、10、11;
    所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,
    故选:D.
    【点睛】
    本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.
    2、B
    【解析】
    分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
    详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
    故选:C.
    点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    3、B
    【解析】
    0.056用科学记数法表示为:0.056=,故选B.
    4、C
    【解析】
    根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可
    【详解】
    解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
    B、四个内角都相等的四边形是矩形,故本选项正确;
    C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
    D、四条边都相等的四边形是菱形,故本选项正确.
    故选C
    【点睛】
    此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键
    5、B
    【解析】
    原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.
    【详解】
    原式
    故选:B.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    6、D
    【解析】
    由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
    【详解】
    解:在△DEF中,∠1=60°,∠DEF=90°,
    ∴∠D=180°-∠DEF-∠1=30°.
    ∵AB∥CD,
    ∴∠2=∠D=30°.
    故选D.
    【点睛】
    本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
    7、C
    【解析】
    如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
    【详解】
    如图,对图形进行点标注.

    ∵直线a∥b,
    ∴∠AMO=∠2;
    ∵∠ANM=∠1,而∠1=55°,
    ∴∠ANM=55°,
    ∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
    故选C.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
    8、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
    9、B
    【解析】
    根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.
    【详解】
    ∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
    ∴△=(-2)2-4m=4-4m>0,
    解得:m<1.
    故选B.
    【点睛】
    本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.
    10、A
    【解析】
    试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
    考点:一次函数图象上点的坐标特征.
    11、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    12、B
    【解析】
    因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.
    解:∵AB是⊙O的直径,
    ∴∠ADB=90°.
    ∵∠BAD=25°,
    ∴∠B=65°,
    ∴∠C=∠B=65°(同弧所对的圆周角相等).
    故选B.


    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、-1
    【解析】
    根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
    故答案为-1.
    点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
    14、1.
    【解析】
    试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.
    试题解析:∵BC的垂直平分线交AB于点D,
    ∴CD=BD=6,
    ∴∠DCB=∠B=40°,
    ∴∠ADC=∠B+∠BCD=80°,
    ∴∠ADC=∠A=80°,
    ∴AC=CD=6,
    ∴△ADC的周长为:AD+DC+AC=2+6+6=1.
    考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.
    15、1.
    【解析】
    分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
    详解:∵==,解得:旗杆的高度=×30=1.
    故答案为1.
    点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
    16、.
    【解析】
    试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,
    得到y=3x+m+2为正比例函数,即m+2=0,
    解得:m=-2,
    则分式方程为,
    去分母得:2-(x-1)=2(x-1),
    去括号得:2-x+1=2x-2,
    解得:x=,
    经检验x=是分式方程的解
    考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.
    17、增大.
    【解析】
    根据二次函数的增减性可求得答案
    【详解】
    ∵二次函数y=x2
    的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.
    故答案为:增大.
    【点睛】
    本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
    18、5 >
    【解析】
    A:根据平移的性质得到OA′=OA,OO′=BB′,根据点A′在直线求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.
    【详解】
    A:由平移的性质可知,OA′=OA=4,OO′=BB′.因为点A′在直线上,将y=4代入,得到x=5.所以OO′=5,又因为OO′=BB′,所以点B与其对应点B′间的距离为5.故答案为5.
    B:sin53°=cos(90°-53°)=cos37°,
    tan37°= ,
    根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,
    即tan37°> ,cos37°< ,
    又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.
    【点睛】
    本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    根据菱形的性质,先证明△ABE≌△ADF,即可得解.
    【详解】
    在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
    ∵点E,F分别是BC,CD边的中点,
    ∴BE=BC,DF=CD,
    ∴BE=DF.
    ∴△ABE≌△ADF,
    ∴AE=AF.
    20、
    【解析】
    根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
    【详解】
    解:×÷(20﹣18)
    【点睛】
    考查有理数的混合运算,列出式子是解题的关键.
    21、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
    【解析】
    试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
    试题解析:(1)∵y=a(x+3)(x﹣1),
    ∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
    ∵直线y=﹣x+b经过点A,
    ∴b=﹣3,
    ∴y=﹣x﹣3,
    当x=2时,y=﹣5,
    则点D的坐标为(2,﹣5),
    ∵点D在抛物线上,
    ∴a(2+3)(2﹣1)=﹣5,
    解得,a=﹣,
    则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
    (2)作PH⊥x轴于H,
    设点P的坐标为(m,n),
    当△BPA∽△ABC时,∠BAC=∠PBA,
    ∴tan∠BAC=tan∠PBA,即=,
    ∴=,即n=﹣a(m﹣1),
    ∴,
    解得,m1=﹣4,m2=1(不合题意,舍去),
    当m=﹣4时,n=5a,
    ∵△BPA∽△ABC,
    ∴=,即AB2=AC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则n=5a=﹣,
    ∴点P的坐标为(﹣4,﹣);
    当△PBA∽△ABC时,∠CBA=∠PBA,
    ∴tan∠CBA=tan∠PBA,即=,
    ∴=,即n=﹣3a(m﹣1),
    ∴,
    解得,m1=﹣6,m2=1(不合题意,舍去),
    当m=﹣6时,n=21a,
    ∵△PBA∽△ABC,
    ∴=,即AB2=BC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则点P的坐标为(﹣6,﹣),
    综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);

    (3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
    则tan∠DAN===,
    ∴∠DAN=60°,
    ∴∠EDF=60°,
    ∴DE==EF,
    ∴Q的运动时间t=+=BE+EF,
    ∴当BE和EF共线时,t最小,
    则BE⊥DM,E(1,﹣4).

    考点:二次函数综合题.
    22、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
    【解析】
    (1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
    (2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
    (3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
    【详解】
    (1)①当△AE B′为等边三角形时,∠AE B′=60°,
    由折叠可得,∠BEF=∠BE B′=×120°=60°,
    故答案为60;
    ②A B′∥EF,
    证明:∵点E是AB的中点,
    ∴AE=BE,
    由折叠可得BE=B′E,
    ∴AE=B′E,
    ∴∠EA B′=∠E B′A,
    又∵∠BEF=∠B′EF,
    ∴∠BEF=∠BA B′,
    ∴EF∥A B′;
    (2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
    ∴CF+ B′F=CF+BF=BC=10,
    ∵B′E+ B′C≥CE,
    ∴B′C≥CE﹣B′E=5﹣5,
    ∴B′C最小值为5﹣5,
    ∴△CB′F周长的最小值=10+5﹣5=5+5;
    (3)如图,连接A B′,易得∠A B′B=90°,
    将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
    由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
    由AB=10,B B′=6,可得A B′=8,
    ∴QM=QN=A B′=8,
    设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
    ∵∠BQP=90°,
    ∴22+(8﹣x)2=(6+x)2,
    解得:x=,
    ∴P B′=x=.



    【点睛】
    本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    23、(1)见解析;(2)2 (3)1
    【解析】
    (1)通过证明∠BED=∠DBE得到DB=DE;
    (2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
    (3)证明△DBF∽△ADB,然后利用相似比求AD的长.
    【详解】
    (1)证明:∵AD平分∠BAC,BE平分∠ABD,
    ∴∠1=∠2,∠3=∠4,
    ∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
    ∴DB=DE;
    (2)解:连接CD,如图,

    ∵∠BAC=10°,
    ∴BC为直径,
    ∴∠BDC=10°,
    ∵∠1=∠2,
    ∴DB=BC,
    ∴△DBC为等腰直角三角形,
    ∴BC=BD=4,
    ∴△ABC外接圆的半径为2;
    (3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
    ∴△DBF∽△ADB,
    ∴=,即=,
    ∴AD=1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
    24、(1)见解析;(2)时,的值最大,
    【解析】
    (1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;
    (2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.
    【详解】
    解:(1)证明:如图,延长交的延长线于点,

    ∵为的中点,
    ∴.
    在中,,
    ∴.
    在和中,

    ∴,
    ∴,,
    ∵.
    ∴,
    ∴,
    ∵,,点是的中点,
    ∴,.
    ∴.
    ∴.
    ∴.
    在中,,
    又∵,
    ∴.

    (2)设,则,
    ∵,
    ∴,
    在中,,
    在中,,
    ∵,
    ∴,
    ∴,
    ∴当,即时,的值最大,
    ∴.
    在中,
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.
    25、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    26、 (1) b2 (2)1
    【解析】
    分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
    详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
    (2) 解:, 解得:x=1,
    经检验 x=1为原方程的根, 所以原方程的解为x=1.
    点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.
    27、(1)=; (2).
    【解析】
    (1)根据题意可知,,,,
    ,…由此得出第n个等式:an=;
    (2)将每一个等式化简即可求得答案.
    【详解】
    解:(1)∵第1个等式:,
    第2个等式:,
    第3个等式:,
    第4个等式:,
    ∴第n个等式:an=;
    (2)a1+a2+a3+…+an
    =(
    =.
    故答案为;.
    【点睛】
    此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.

    相关试卷

    云南省文山市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份云南省文山市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了实数的相反数是等内容,欢迎下载使用。

    宁波市北仑区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份宁波市北仑区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,在同一平面内,下列说法,估计-1的值在等内容,欢迎下载使用。

    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map