|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年吉林省松原市前郭五中学中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年吉林省松原市前郭五中学中考数学全真模拟试题含解析01
    2021-2022学年吉林省松原市前郭五中学中考数学全真模拟试题含解析02
    2021-2022学年吉林省松原市前郭五中学中考数学全真模拟试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年吉林省松原市前郭五中学中考数学全真模拟试题含解析

    展开
    这是一份2021-2022学年吉林省松原市前郭五中学中考数学全真模拟试题含解析,共23页。试卷主要包含了下列说法,在平面直角坐标系中,点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为(  )

    A. B. C. D.
    2.如图的几何体中,主视图是中心对称图形的是(  )
    A. B. C. D.
    3.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是(  )
    A.甲 B.乙 C.甲乙同样稳定 D.无法确定
    4.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )

    A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
    C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
    5.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )

    A. B. C. D.
    6.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

    A.6 B.8 C.10 D.12
    7.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是.其中正确的个数(  )
    A.1 B.2 C.3 D.4
    8.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    9.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    10.下列各点中,在二次函数的图象上的是( )
    A. B. C. D.
    11.下列图形中,不是中心对称图形的是(  )
    A.平行四边形 B.圆 C.等边三角形 D.正六边形
    12.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为(  )

    A.7 B.8 C.9 D.10
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.因式分解:4x2y﹣9y3=_____.
    14.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)

    15.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1= .

    16.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________ .

    17.如果不等式组的解集是x<2,那么m的取值范围是_____
    18.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(1)计算:.
    (2)解方程:x2﹣4x+2=0
    20.(6分)计算:2-1+20160-3tan30°+|-|
    21.(6分)如图,已知二次函数的图象经过,两点.
    求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.
    22.(8分)已知,关于x的方程x2﹣mx+m2﹣1=0,
    (1)不解方程,判断此方程根的情况;
    (2)若x=2是该方程的一个根,求m的值.
    23.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
    (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;
    (3)△A2B2C2的面积是   平方单位.

    24.(10分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    25.(10分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
    若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
    26.(12分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:

    (1)通过取点、画图、测量,得到了x与y的几组值,如下表:
    x/cm
    1
    1.5
    2
    2.5
    3
    3.5
    4
    y/cm
    0
    3.7
    ______
    3.8
    3.3
    2.5
    ______
    (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.
    27.(12分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
    (1)判断△ABC的形状,并证明你的结论;
    (2)如图1,若BE=CE=,求⊙A的面积;
    (3)如图2,若tan∠CEF=,求cos∠C的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
    【详解】
    如图所示,

    ∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
    ∴DE2+CE2=CD2,DE=CE,
    ∴2S2=S1.
    观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
    ∴Sn=()n﹣2.
    当n=2018时,S2018=()2018﹣2=()3.
    故选A.
    【点睛】
    本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
    2、C
    【解析】
    解:球是主视图是圆,圆是中心对称图形,故选C.
    3、A
    【解析】
    根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    ∵S甲2=1.4,S乙2=2.5,
    ∴S甲2<S乙2,
    ∴甲、乙两名同学成绩更稳定的是甲;
    故选A.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    4、C
    【解析】
    试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
    故选C.

    考点:1、矩形性质,2、勾股定理,3、三角形的中位线
    5、B
    【解析】
    根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
    【详解】
    解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    ∴∠B=∠A′B′C=65°.
    故选B.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    6、B
    【解析】
    分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
    详解:如图,过点D作DE⊥AB于E,

    ∵AB=8,CD=2,
    ∵AD是∠BAC的角平分线,
    ∴DE=CD=2,
    ∴△ABD的面积
    故选B.
    点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
    7、A
    【解析】
    根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.
    【详解】
    ①平分弦(不是直径)的直径垂直于弦,故此结论错误;
    ②在n次随机实验中,事件A出现m次,则事件A发生的频率,试验次数足够大时可近似地看做事件A的概率,故此结论错误;
    ③各角相等的圆外切多边形是正多边形,此结论正确;
    ④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;
    ⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是.故此结论错误;
    故选:A.
    【点睛】
    本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.
    8、A
    【解析】
    分点P的横坐标是正数和负数两种情况讨论求解.
    【详解】
    ①m-3>0,即m>3时,
    2-m<0,
    所以,点P(m-3,2-m)在第四象限;
    ②m-3<0,即m<3时,
    2-m有可能大于0,也有可能小于0,
    点P(m-3,2-m)可以在第二或三象限,
    综上所述,点P不可能在第一象限.
    故选A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    9、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
    10、D
    【解析】
    将各选项的点逐一代入即可判断.
    【详解】
    解:当x=1时,y=-1,故点不在二次函数的图象;
    当x=2时,y=-4,故点和点不在二次函数的图象;
    当x=-2时,y=-4,故点在二次函数的图象;
    故答案为:D.
    【点睛】
    本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
    11、C
    【解析】
    根据中心对称图形的定义依次判断各项即可解答.
    【详解】
    选项A、平行四边形是中心对称图形;
    选项B、圆是中心对称图形;
    选项C、等边三角形不是中心对称图形;
    选项D、正六边形是中心对称图形;
    故选C.
    【点睛】
    本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
    12、C
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    根据三视图知,该几何体中小正方体的分布情况如下图所示:

    所以组成这个几何体的小正方体个数最多为9个,
    故选C.
    【点睛】
    考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、y(2x+3y)(2x-3y)
    【解析】
    直接提取公因式y,再利用平方差公式分解因式即可.
    【详解】
    4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    14、①②③
    【解析】
    (1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
    【详解】
    (1)∵四边形ABCD是菱形,BD=AB,
    ∴AB=BD=BC=DC=DA,
    ∴△ABD和△CBD都是等边三角形,
    ∴∠A=∠BDF=60°,
    又∵AE=DF,
    ∴△AED≌△DFB,即结论①正确;
    (2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
    ∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
    ∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠CDN=∠CBM,
    如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
    ∴∠CDN=∠CBM=90°,
    又∵CB=CD,
    ∴△CBM≌△CDN,
    ∴S四边形BCDG=S四边形CMGN=2S△CGN,
    ∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
    ∴GN=CG,CN=CG,
    ∴S△CGN=CG2,
    ∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;

    (3)如下图,过点F作FK∥AB交DE于点K,
    ∴△DFK∽△DAE,△GFK∽△GBE,
    ∴,,
    ∵AF=2DF,
    ∴,
    ∵AB=AD,AE=DF,AF=2DF,
    ∴BE=2AE,
    ∴,
    ∴BG=6FG,即结论③成立.

    综上所述,本题中正确的结论是:
    故答案为①②③
    点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.
    15、107°
    【解析】
    过C作d∥a, 得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.
    【详解】
    过C作d∥a, ∴a∥b, ∴a∥b∥d,

    ∵四边形ABCD是正方形,∴∠DCB=90°, ∵∠2=73°,∴∠6=90°-∠2=17°,
    ∵b∥d, ∴∠3=∠6=17°, ∴∠4=90°-∠3=73°, ∴∠5=180°-∠4=107°,
    ∵a∥d, ∴∠1=∠5=107°,故答案为107°.
    【点睛】
    本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.
    16、°
    【解析】
    通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.
    【详解】
    把△PAB绕B点顺时针旋转90°,得△P′BC,

    则△PAB≌△P′BC,
    设PA=x,PB=2x,PC=3x,连PP′,
    得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,
    ∠PP′B=45°.
    又PC2=PP′2+P′C2,
    得∠PP′C=90°.
    故∠APB=∠CP′B=45°+90°=135°.
    故答案为135°.
    【点睛】
    本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.
    17、m≥1.
    【解析】
    分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
    详解:解第一个不等式得,x<1,
    ∵不等式组的解集是x<1,
    ∴m≥1,
    故答案为m≥1.
    点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.
    18、
    【解析】
    分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解.
    解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得:
    故答案为
    点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)-1;(2)x1=2+,x2=2﹣
    【解析】
    (1)按照实数的运算法则依次计算即可;
    (2)利用配方法解方程.
    【详解】
    (1)原式=﹣2﹣1+2×=﹣1;
    (2)x2﹣4x+2=0,
    x2﹣4x=﹣2,
    x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
    ∴x﹣2=±,
    ∴x1=2+,x2=2﹣.
    【点睛】
    此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
    20、
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;
    【详解】
    原式=
    =
    =.
    【点睛】
    此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.
    21、见解析
    【解析】
    (1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;
    (2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.
    【详解】
    (1)把,代入得

    解得.
    ∴这个二次函数解析式为.
    (2)∵抛物线对称轴为直线,
    ∴的坐标为,
    ∴,
    ∴.
    【点睛】
    本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.
    22、(1)证明见解析;(2)m=2或m=1.
    【解析】
    (1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
    (2)将x=2代入方程得到关于m的方程,解之可得.
    【详解】
    (1)∵△=(﹣m)2﹣4×1×(m2﹣1)
    =m2﹣m2+4
    =4>0,
    ∴方程有两个不相等的实数根;
    (2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
    整理,得:m2﹣8m+12=0,
    解得:m=2或m=1.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
    23、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    24、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    25、(1);(2)∠CDE=2∠A.
    【解析】
    (1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
    (2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
    【详解】
    (1)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    在Rt△ABC中,由勾股定理得:
    AB=
    =,
    ∴AO=AB=.
    ∵OD⊥AB,
    ∴∠AOE=∠ACB=90°,
    又∵∠A=∠A,
    ∴△AOE∽△ACB,
    ∴,
    ∴OE=
    =.
    (2)∠CDE=2∠A.理由如下:
    连结OC,
    ∵OA=OC,
    ∴∠1=∠A,
    ∵CD是⊙O的切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∴∠2+∠CDE=90°,
    ∵OD⊥AB,
    ∴∠2+∠3=90°,
    ∴∠3=∠CDE.
    ∵∠3=∠A+∠1=2∠A,
    ∴∠CDE=2∠A.

    考点:切线的性质;探究型;和差倍分.
    26、(1)4,1;(2)见解析;(3)1.1或3.2
    【解析】
    (1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.
    (2)利用描点法画出函数图象即可;
    (3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;
    【详解】
    (1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,
    当x=4时,点P与B重合,此时BQ=1.
    故答案为4,1.
    (2)函数图象如图所示:

    (3)如图,

    在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,
    ∴∠BMQ=31°,
    ∴BQ=BM=2,
    观察图象可知y=2时,对应的x的值为1.1或3.2.
    故答案为1.1或3.2.
    【点睛】
    本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.
    27、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
    【解析】
    (1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
    【详解】
    解:∵,
    ∴,
    ∴△CEF∽△CBE,
    ∴∠CBE=∠CEF,
    ∵AE=AD,
    ∴∠ADE=∠AED=∠FEC=∠CBE,
    ∵BD为直径,
    ∴∠ADE+∠ABE=90°,
    ∴∠CBE+∠ABE=90°,
    ∴∠DBC=90°△ABC为直角三角形.
    (2)∵BE=CE
    ∴设∠EBC=∠ECB=x,
    ∴∠BDE=∠EBC=x,
    ∵AE=AD
    ∴∠AED=∠ADE=x,
    ∴∠CEF=∠AED=x
    ∴∠BFE=2x
    在△BDF中由△内角和可知:
    3x=90°
    ∴x=30°
    ∴∠ABE=60°
    ∴AB=BE=

    (3)由(1)知:∠D=∠CFE=∠CBE,
    ∴tan∠CBE=,
    设EF=a,BE=2a,
    ∴BF=,BD=2BF=,
    ∴AD=AB=,
    ∴,DE=2BE=4a,过F作FK∥BD交CE于K,
    ∴,  
    ∵, 

    ∴,
    ∴tan∠C=
    ∴cos∠C=.

    【点睛】
    此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.

    相关试卷

    2023年吉林省松原市前郭县学区五校中考数学五模试卷(含解析): 这是一份2023年吉林省松原市前郭县学区五校中考数学五模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年吉林省松原市前郭县南部学区中考数学三模试卷(含解析): 这是一份2023年吉林省松原市前郭县南部学区中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年吉林省松原市前郭县学区中考数学二模试卷(含解析): 这是一份2023年吉林省松原市前郭县学区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map