|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年湖北省武汉市洪山区中考二模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年湖北省武汉市洪山区中考二模数学试题含解析01
    2021-2022学年湖北省武汉市洪山区中考二模数学试题含解析02
    2021-2022学年湖北省武汉市洪山区中考二模数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省武汉市洪山区中考二模数学试题含解析

    展开
    这是一份2021-2022学年湖北省武汉市洪山区中考二模数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算错误的是,下列说法中不正确的是,分式方程=1的解为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是(  )

    A. B. C. D.
    2.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为(  )

    A.:1 B.2: C.2:1 D.29:14
    3.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于(  )

    A.132° B.134° C.136° D.138°
    4.下列计算错误的是(  )
    A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a4
    5.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    6.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    7.下列条件中不能判定三角形全等的是( )
    A.两角和其中一角的对边对应相等 B.三条边对应相等
    C.两边和它们的夹角对应相等 D.三个角对应相等
    8.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为(  )
    A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
    9.在平面直角坐标系中,点(2,3)所在的象限是(   )
    A.第一象限                            B.第二象限                            C.第三象限                            D.第四象限
    10.分式方程=1的解为(  )
    A.x=1 B.x=0 C.x=﹣ D.x=﹣1
    11.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:
    月用水量(吨)
    8
    9
    10
    户数
    2
    6
    2
    则关于这10户家庭的月用水量,下列说法错误的是(  )
    A.方差是4 B.极差是2 C.平均数是9 D.众数是9
    12.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为(  )米.
    A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.的相反数是______.
    14.如果2,那么=_____(用向量,表示向量).
    15.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    16.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.

    17.一只蚂蚁从数轴上一点 A出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____
    18.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
    态度
    非常喜欢
    喜欢
    一般
    不知道
    频数
    90
    b
    30
    10
    频率
    a
    0.35
    0.20

    请你根据统计图、表,提供的信息解答下列问题:
    (1)该校这次随即抽取了 名学生参加问卷调查:
    (2)确定统计表中a、b的值:a= ,b= ;
    (3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
    20.(6分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)

    21.(6分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.

    (1)由定义知,取AB中点N,连结MN,MN与AB的关系是_____.
    (2)抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.
    (3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    22.(8分)(1)计算:
    (2)化简:
    23.(8分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.

    24.(10分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
    A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
    某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
    25.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
    (1)求该抛物线的解析式;
    (2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
    (3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
    (4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

    26.(12分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
    (1)求圆O的半径;
    (2)如果AE=6,求EF的长.

    27.(12分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
    【详解】
    解:∵矩形OABC,

    ∴CB∥x轴,AB∥y轴.
    ∵点B坐标为(6,1),
    ∴D的横坐标为6,E的纵坐标为1.
    ∵D,E在反比例函数的图象上,
    ∴D(6,1),E(,1),
    ∴BE=6﹣=,BD=1﹣1=3,
    ∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
    ∵B,B′关于ED对称,
    ∴BF=B′F,BB′⊥ED,
    ∴BF•ED=BE•BD,即BF=3×,
    ∴BF=,
    ∴BB′=.
    设EG=x,则BG=﹣x.
    ∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
    ∴,
    ∴x=,
    ∴EG=,
    ∴CG=,
    ∴B′G=,
    ∴B′(,﹣),
    ∴k=.
    故选B.
    【点睛】
    本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
    2、A
    【解析】
    试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
    故选A.
    考点:反比例函数系数k的几何意义
    3、B
    【解析】
    过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
    解:

    过E作EF∥AB,
    ∵AB∥CD,
    ∴AB∥CD∥EF,
    ∴∠C=∠FEC,∠BAE=∠FEA,
    ∵∠C=44°,∠AEC为直角,
    ∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
    ∴∠1=180°﹣∠BAE=180°﹣46°=134°,
    故选B.
    “点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
    4、C
    【解析】
    解:A、a•a=a2,正确,不合题意;
    B、2a+a=3a,正确,不合题意;
    C、(a3)2=a6,故此选项错误,符合题意;
    D、a3÷a﹣1=a4,正确,不合题意;
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.
    5、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    6、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    7、D
    【解析】
    解:A、符合AAS,能判定三角形全等;
    B、符合SSS,能判定三角形全等;;
    C、符合SAS,能判定三角形全等;
    D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
    故选D.
    8、C
    【解析】
    根据题意列出代数式,化简即可得到结果.
    【详解】
    根据题意得:a÷(1−20%)=a÷= a(元),
    故答案选:C.
    【点睛】
    本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
    9、A
    【解析】
    根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
    【详解】
    解:点(2,3)所在的象限是第一象限.
    故答案为:A
    【点睛】
    考核知识点:点的坐标与象限的关系.
    10、C
    【解析】
    首先找出分式的最简公分母,进而去分母,再解分式方程即可.
    【详解】
    解:去分母得:
    x2-x-1=(x+1)2,
    整理得:-3x-2=0,
    解得:x=-,
    检验:当x=-时,(x+1)2≠0,
    故x=-是原方程的根.
    故选C.
    【点睛】
    此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
    11、A
    【解析】
    分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= [(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.
    详解:极差:10-8=2,
    平均数:(8×2+9×6+10×2)÷10=9,
    众数为9,
    方差:S2= [(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,
    故选A.
    点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.
    12、C
    【解析】
    423公里=423 000米=4.23×105米.
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣.
    【解析】
    根据只有符号不同的两个数叫做互为相反数解答.
    【详解】
    的相反数是.
    故答案为.
    【点睛】
    本题考查的知识点是相反数,解题关键是熟记相反数的概念.
    14、
    【解析】
    ∵2(+)=+,∴2+2=+,∴=-2,
    故答案为.
    点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    15、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    16、(2,0)
    【解析】
    【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
    【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
    ∵A(m,﹣3)和点B(﹣1,n),
    ∴OE=1,AF=3,
    ∵∠ACB=45°,
    ∴∠APB=90°,
    ∴∠BPE+∠APF=90°,
    ∵∠BPE+∠EBP=90°,
    ∴∠APF=∠EBP,
    ∵∠BEP=∠AFP=90°,PA=PB,
    ∴△BPE≌△PAF,
    ∴PE=AF=3,
    设P(a,0),
    ∴a+1=3,
    a=2,
    ∴P(2,0),
    故答案为(2,0).

    【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
    17、﹣6 或 8
    【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.
    18、
    【解析】
    首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
    【详解】
    列表如下:

    ﹣2
    ﹣1
    2
    ﹣2

    2
    ﹣4
    ﹣1
    2

    ﹣2
    2
    ﹣4
    ﹣2

    由表可知,共有6种等可能结果,其中积为正数的有2种结果,
    所以积为正数的概率为,
    故答案为.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)200,;(2)a=0.45,b=70;(3)900名.
    【解析】
    (1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
    【详解】
    解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
    (2)“非常喜欢”频数90,a= ;
    (3).
    故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
    【点睛】
    此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
    20、30米
    【解析】
    设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.
    【详解】
    由题意得,∠ABD=30°,∠ACD=45°,BC=60m,
    设AD=xm,
    在Rt△ACD中,∵tan∠ACD=,
    ∴CD=AD=x,
    ∴BD=BC+CD=x+60,
    在Rt△ABD中,∵tan∠ABD=,
    ∴,
    ∴米,
    答:山高AD为30米.
    【点睛】
    本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
    21、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    22、(1);(2)-1;
    【解析】
    (1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;
    (2)根据分式的除法和减法可以解答本题.
    【详解】
    (1)

    =
    =2-.
    (2)
    =
    =
    =
    =
    =-1
    【点睛】
    本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.
    23、(1)k=2;(2)点D经过的路径长为.
    【解析】
    (1)根据题意求得点B的坐标,再代入求得k值即可;
    (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
    【详解】
    (1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
    ∴AB=OA=OC=OD=,
    ∴点B坐标为(,),
    代入得k=2;
    (2)设平移后与反比例函数图象的交点为D′,
    由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,

    ∵OC=OD=,∠AOB=∠COM=45°,
    ∴OM=MC=MD=1,
    ∴D坐标为(﹣1,1),
    设D′横坐标为t,则OE=MF=t,
    ∴D′F=DF=t+1,
    ∴D′E=D′F+EF=t+2,
    ∴D′(t,t+2),
    ∵D′在反比例函数图象上,
    ∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
    ∴D′(﹣1, +1),
    ∴DD′=,
    即点D经过的路径长为.
    【点睛】
    本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.
    24、 (1)600人(2)
    【解析】
    (1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;
    (2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.
    【详解】
    (1)(人),∴最喜欢方式A的有600人
    (2)列表法:

    A
    B
    C
    A
    A,A
    A,B
    A,C
    B
    B,A
    B,B
    B,C
    C
    C,A
    C,B
    C,C
    树状法:

    ∴(同一种购票方式)
    【点睛】
    本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    25、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    【解析】
    试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
    (1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
    (2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
    (4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
    试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
    ∴,解得 ,
    ∴抛物线解析式为y=﹣ x1+x+4;
    (1)由(1)可求得抛物线顶点为N(1, ),
    如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,

    设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
    ∴直线C′N的解析式为y=x-4 ,
    令y=0,解得x= ,
    ∴点K的坐标为(,0);
    (2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,

    由﹣ x1+x+4=0,得x1=﹣1,x1=4,
    ∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
    又∵QE∥AC,∴△BQE≌△BAC,
    ∴ ,即 ,解得EG= ;
    ∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
    = =-(m-1)1+2 .
    又∵﹣1≤m≤4,
    ∴当m=1时,S△CQE有最大值2,此时Q(1,0);
    (4)存在.在△ODF中,
    (ⅰ)若DO=DF,∵A(4,0),D(1,0),
    ∴AD=OD=DF=1.
    又在Rt△AOC中,OA=OC=4,
    ∴∠OAC=45°.
    ∴∠DFA=∠OAC=45°.
    ∴∠ADF=90°.
    此时,点F的坐标为(1,1).
    由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
    此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
    (ⅱ)若FO=FD,过点F作FM⊥x轴于点M.

    由等腰三角形的性质得:OM=OD=1,
    ∴AM=2.
    ∴在等腰直角△AMF中,MF=AM=2.
    ∴F(1,2).
    由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
    此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
    (ⅲ)若OD=OF,
    ∵OA=OC=4,且∠AOC=90°.
    ∴AC=4.
    ∴点O到AC的距离为1.
    而OF=OD=1<1,与OF≥1矛盾.
    ∴在AC上不存在点使得OF=OD=1.
    此时,不存在这样的直线l,使得△ODF是等腰三角形.
    综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
    26、 (1) 圆的半径为4.5;(2) EF=.
    【解析】
    (1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
    (2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
    【详解】
    (1)连接OD,
    ∵直径AB⊥弦CD,CD=4,
    ∴DH=CH=CD=2,
    在Rt△ODH中,AH=5,
    设圆O的半径为r,
    根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
    解得:r=4.5,
    则圆的半径为4.5;
    (2)过O作OG⊥AE于G,
    ∴AG=AE=×6=3,
    ∵∠A=∠A,∠AGO=∠AHF,
    ∴△AGO∽△AHF,
    ∴,
    ∴,
    ∴AF=,
    ∴EF=AF﹣AE=﹣6=.

    【点睛】
    本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
    27、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
    【解析】
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
    【详解】(1)当x=1时,n=﹣×1+4=1,
    ∴点B的坐标为(1,1).
    ∵反比例函数y=过点B(1,1),
    ∴k=1×1=1;
    (2)∵k=1>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤1时,1≤y≤2.
    【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.

    相关试卷

    2024年湖北省武汉市洪山区中考模拟数学试题(原卷版+解析版): 这是一份2024年湖北省武汉市洪山区中考模拟数学试题(原卷版+解析版),文件包含2024年湖北省武汉市洪山区中考模拟数学试题原卷版docx、2024年湖北省武汉市洪山区中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    2023年湖北省武汉市洪山区中考模拟数学试题(二)(含解析): 这是一份2023年湖北省武汉市洪山区中考模拟数学试题(二)(含解析),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    湖北省武汉市硚口区市级名校2021-2022学年中考二模数学试题含解析: 这是一份湖北省武汉市硚口区市级名校2021-2022学年中考二模数学试题含解析,共20页。试卷主要包含了下列各式计算正确的是,将一副三角尺,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map