2021-2022学年河北省保定市阜平县重点中学中考数学全真模拟试题含解析
展开这是一份2021-2022学年河北省保定市阜平县重点中学中考数学全真模拟试题含解析,共19页。试卷主要包含了如图图形中,是中心对称图形的是,的一个有理化因式是,如果,那么的值为,下列运算结果正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A.4.995×1011 B.49.95×1010
C.0.4995×1011 D.4.995×1010
2.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
3.如图,点A所表示的数的绝对值是( )
A.3 B.﹣3 C. D.
4.如图图形中,是中心对称图形的是( )
A. B. C. D.
5.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
6.的一个有理化因式是( )
A. B. C. D.
7.如果,那么的值为( )
A.1 B.2 C. D.
8.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为( )
A.﹣2 B.4 C.﹣4 D.2
9.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( )
A. B. C. D.
10.下列运算结果正确的是( )
A.3a﹣a=2 B.(a﹣b)2=a2﹣b2
C.a(a+b)=a2+b D.6ab2÷2ab=3b
11.估计﹣1的值在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
12.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果分式的值为0,那么x的值为___________.
14.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .
15.分式有意义时,x的取值范围是_____.
16.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.
17.化简的结果等于__.
18.如图, ⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
求m、n的值;求直线AC的解析式.
20.(6分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
21.(6分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.
(1)直接写出点A的坐标;
(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.
①当∠BAC=90°时.求抛物线G2的表达式;
②若60°<∠BAC<120°,直接写出m的取值范围.
22.(8分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
x
0
1
2
3
4
5
6
y
5.2
4.2
4.6
5.9
7.6
9.5
说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.
23.(8分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)
24.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤
每件的售价/元
每件的成本/元
甲
50
乙
60
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
25.(10分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
26.(12分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
27.(12分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:
(1)小新的速度为_____米/分,a=_____;并在图中画出y2与x的函数图象
(2)求小新路过小华家后,y1与x之间的函数关系式.
(3)直接写出两人离小华家的距离相等时x的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
将499.5亿用科学记数法表示为:4.995×1.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、A
【解析】
根据负数的绝对值是其相反数解答即可.
【详解】
|-3|=3,
故选A.
【点睛】
此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
4、D
【解析】
根据中心对称图形的概念和识别.
【详解】
根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.
故选D.
【点睛】
本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.
5、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
6、B
【解析】
找出原式的一个有理化因式即可.
【详解】
的一个有理化因式是,
故选B.
【点睛】
此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
7、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
8、C
【解析】
试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
故选C.
考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
9、C
【解析】
列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
解:
共16种情况,和为6的情况数有3种,所以概率为.
故选C.
10、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=2a,不符合题意;
B、原式=a2-2ab+b2,不符合题意;
C、原式=a2+ab,不符合题意;
D、原式=3b,符合题意;
故选D
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
11、B
【解析】
根据,可得答案.
【详解】
解:∵,
∴,
∴
∴﹣1的值在2和3之间.
故选B.
【点睛】
本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
12、A
【解析】
试题分析:从上面看是一行3个正方形.
故选A
考点:三视图
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4
【解析】
∵,
∴x-4=0,x+2≠0,
解得:x=4,
故答案为4.
14、2
【解析】
先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.
【详解】
∵1行1个数,
2行3个数,
3行5个数,
4行7个数,
…
19行应有2×19-1=37个数
∴到第19行一共有
1+3+5+7+9+…+37=19×19=1.
第20行第3个数的绝对值是1+3=2.
又2是偶数,
故第20行第3个数是2.
15、x<1
【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.
【详解】
根据题意得:1﹣x>2,
解得:x<1.
故答案为x<1.
【点睛】
考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.
16、10,,.
【解析】
解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
故答案为10,,.
17、.
【解析】
先通分变为同分母分式,然后根据分式的减法法则计算即可.
【详解】
解:原式
.
故答案为:.
【点睛】
此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.
18、35°
【解析】
试题分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为35°.
考点:圆周角定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)m=-1,n=-1;(2)y=-x+
【解析】
(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
【详解】
(1)∵直线与双曲线相交于A(-1,a)、B两点,
∴B点横坐标为1,即C(1,0)
∵△AOC的面积为1,
∴A(-1,1)
将A(-1,1)代入,可得m=-1,n=-1;
(2)设直线AC的解析式为y=kx+b
∵y=kx+b经过点A(-1,1)、C(1,0)
∴解得k=-,b=.
∴直线AC的解析式为y=-x+.
【点睛】
本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
20、 (1)2;(2) x﹣y.
【解析】
分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
详解:(1)原式=3﹣4﹣2×+4=2;
(2)原式=•=x﹣y.
点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
21、(1)(,2);(2)①y=(x-)2+2;②
【解析】
(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;
(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;
②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.
【详解】
(1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,
∴抛物线G2:y=m(x-)2+2,
∵点A是抛物线G2的顶点.
∴点A的坐标为(,2).
(2)①设抛物线对称轴与直线l交于点D,如图1所示.
∵点A是抛物线顶点,
∴AB=AC.
∵∠BAC=90°,
∴△ABC为等腰直角三角形,
∴CD=AD=,
∴点C的坐标为(2,).
∵点C在抛物线G2上,
∴=m(2-)2+2,
解得:.
②依照题意画出图形,如图2所示.
同理:当∠BAC=60°时,点C的坐标为(+1,);
当∠BAC=120°时,点C的坐标为(+3,).
∵60°<∠BAC<120°,
∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,
∴,
解得:.
【点睛】
此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.
22、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
【解析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【详解】
(1)根据题意,作图得,y=4.5故答案为:4.5
(2)根据数据画图得
(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【点睛】
本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
23、详见解析
【解析】
先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
【详解】
如图
作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
【点睛】
本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
24、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
【详解】
(1)∵甲种T恤进货250件
∴乙种T恤进货量为:400-250=150件
故由题意得,;
(2)①
②;
故.
(3)由题意,,①,,
②,
综上,最大利润为10750元.
【点睛】
本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
25、(1);(2)20分钟.
【解析】
(1)材料加热时,设y=ax+15(a≠0),
由题意得60=5a+15,
解得a=9,
则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).
停止加热时,设y=(k≠0),
由题意得60=,
解得k=300,
则停止加热进行操作时y与x的函数关系式为y=(x≥5);
(2)把y=15代入y=,得x=20,
因此从开始加热到停止操作,共经历了20分钟.
答:从开始加热到停止操作,共经历了20分钟.
26、(1)见解析(2)见解析
【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【详解】
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形
27、(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);
(3)两人离小华家的距离相等时,x的值为2.4或12.
【解析】
(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;
(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;
(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.
【详解】
(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,
小新按此速度再走16分钟到达书店,则a=16×60=960米,
小华到书店的时间为960÷40=24分钟,
则y2与x的函数图象为:
故小新的速度为60米/分,a=960;
(2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0),
将点(4,0),(20,960)代入得:
,
解得:,
∴y1=60x﹣240(4≤x≤20时)
(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x,
①当两人分别在小华家两侧时,若两人到小华家距离相同,
则240﹣6x=40x,
解得:x=2.4;
②当小新经过小华家并追上小华时,两人到小华家距离相同,
则60x﹣240=40x,
解得:x=12;
故两人离小华家的距离相等时,x的值为2.4或12.
相关试卷
这是一份河北省保定阜平县联考2021-2022学年中考数学模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值为,下列方程中,是一元二次方程的是,以下各图中,能确定的是等内容,欢迎下载使用。
这是一份2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析,共21页。试卷主要包含了下列命题中,正确的是,下列运算正确的是,内角和为540°的多边形是等内容,欢迎下载使用。
这是一份2021-2022学年桂林市重点中学中考数学全真模拟试题含解析,共22页。试卷主要包含了八边形的内角和为,下列计算结果是x5的为,下列函数中,二次函数是,若分式有意义,则x的取值范围是等内容,欢迎下载使用。