|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年河北省邯郸市邯郸市育华中学中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年河北省邯郸市邯郸市育华中学中考数学对点突破模拟试卷含解析01
    2021-2022学年河北省邯郸市邯郸市育华中学中考数学对点突破模拟试卷含解析02
    2021-2022学年河北省邯郸市邯郸市育华中学中考数学对点突破模拟试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河北省邯郸市邯郸市育华中学中考数学对点突破模拟试卷含解析

    展开
    这是一份2021-2022学年河北省邯郸市邯郸市育华中学中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了y=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为(  )

    A.31° B.28° C.62° D.56°
    2.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    3.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是(  )
    A. B.
    C. D.
    4.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=(  )
    A.3﹣ B.(+1) C.﹣1 D.(﹣1)
    5.下列方程中有实数解的是(  )
    A.x4+16=0 B.x2﹣x+1=0
    C. D.
    6.y=(m﹣1)x|m|+3m表示一次函数,则m等于(  )
    A.1 B.﹣1 C.0或﹣1 D.1或﹣1
    7.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为(  )

    A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
    8.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=(  )

    A.141° B.144° C.147° D.150°
    9.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )

    A.a+b>0 B.a-b<0 C.<0 D.>
    10.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).

    12.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.

    13.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.

    14.若4a+3b=1,则8a+6b-3的值为______.
    15.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.

    16.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(   ,   ),B1(   ,   ),C1(   ,   );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是   .

    18.(8分)一次函数的图象经过点和点,求一次函数的解析式.
    19.(8分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(≈1.732,结果精确到0.1米)

    20.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
    (1)求k,a,b的值;
    (2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
    (3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.

    21.(8分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
    A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
    以下是根据调查结果绘制的统计图表的一部分,
    运动形式
    A
    B
    C
    D
    E
    人数





    请你根据以上信息,回答下列问题:
    接受问卷调查的共有 人,图表中的 , .
    统计图中,类所对应的扇形的圆心角的度数是 度.

    揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
    22.(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
    23.(12分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).

    24.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
    (1)求这个二次函数的解析式;
    (2)连接AC、BC,判断△ABC的形状,并证明;
    (3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴AD∥BC,∠ADC=90°,
    ∵∠FDB=90°-∠BDC=90°-62°=28°,
    ∵AD∥BC,
    ∴∠CBD=∠FDB=28°,
    ∵矩形ABCD沿对角线BD折叠,
    ∴∠FBD=∠CBD=28°,
    ∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
    故选D.
    【点睛】
    本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    2、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    3、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
    4、C
    【解析】
    根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值.
    【详解】
    解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;
    则BC=2×=-1.
    故答案为:-1.
    【点睛】
    本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍.
    5、C
    【解析】
    A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
    【详解】
    A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
    B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
    C.x=﹣1是方程的根;
    D.当x=1时,分母x2-1=0,无实数根.
    故选:C.
    【点睛】
    本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
    6、B
    【解析】
    由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
    7、C
    【解析】
    根据题目数据求出函数解析式,根据二次函数的性质可得.
    【详解】
    根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
    得:
    解得:a=−0.2,b=1.5,c=−2,
    即p=−0.2t2+1.5t−2,
    当t=−=3.75时,p取得最大值,
    故选C.
    【点睛】
    本题考查了二次函数的应用,熟练掌握性质是解题的关键.
    8、B
    【解析】
    先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
    【详解】
    (6﹣2)×180°÷6=120°,
    (5﹣2)×180°÷5=108°,
    ∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
    =720°﹣360°﹣216°
    =144°,
    故选B.
    【点睛】
    本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
    9、C
    【解析】
    根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.
    【详解】
    解:由数轴,得b<-1,0<a<1.
    A、a+b<0,故A错误;
    B、a-b>0,故B错误;
    C、<0,故C符合题意;
    D、a2<1<b2,故D错误;
    故选C.
    【点睛】
    本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.
    10、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、10海里.
    【解析】
    本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.
    【详解】
    由已知可得:AC=60×0.5=30海里,
    又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,
    ∴∠BAC=90°,
    又∵乙船正好到达甲船正西方向的B点,
    ∴∠C=30°,
    ∴AB=AC•tan30°=30×=10海里.
    答:乙船的路程为10海里.
    故答案为10海里.
    【点睛】
    本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.
    12、
    【解析】
    由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.
    【详解】
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=60°,
    ∴△OAB是等边三角形,OA=OB=AB=2,
    设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

    ∴S阴影=S△OAB-S扇形OMN=
    故答案为
    【点睛】
    考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.
    13、﹣1.
    【解析】
    试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.
    解:∵扇形OAB的圆心角为90°,扇形半径为2,
    ∴扇形面积为:=π(cm2),
    半圆面积为:×π×12=(cm2),
    ∴SQ+SM =SM+SP=(cm2),
    ∴SQ=SP,
    连接AB,OD,
    ∵两半圆的直径相等,
    ∴∠AOD=∠BOD=45°,
    ∴S绿色=S△AOD=×2×1=1(cm2),
    ∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
    故答案为﹣1.

    考点:扇形面积的计算.
    14、-1
    【解析】
    先求出8a+6b的值,然后整体代入进行计算即可得解.
    【详解】
    ∵4a+3b=1,
    ∴8a+6b=2,
    8a+6b-3=2-3=-1;
    故答案为:-1.
    【点睛】
    本题考查了代数式求值,整体思想的利用是解题的关键.
    15、1
    【解析】
    连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.
    【详解】
    连接AD,

    ∵PQ∥AB,
    ∴∠ADQ=∠DAB,
    ∵点D在∠BAC的平分线上,
    ∴∠DAQ=∠DAB,
    ∴∠ADQ=∠DAQ,
    ∴AQ=DQ,
    在Rt△ABC中,∵AB=5,BC=3,
    ∴AC=4,
    ∵PQ∥AB,
    ∴△CPQ∽△CBA,
    ∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,
    在Rt△CPQ中,PQ=5x,
    ∵PD=PC=3x,
    ∴DQ=1x,
    ∵AQ=4-4x,
    ∴4-4x=1x,解得x=,
    ∴CP=3x=1;
    故答案为:1.
    【点睛】
    本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    16、 (2,3)
    【解析】
    作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
    【详解】
    如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,

    ∵点A、B的坐标分别为(-2,1)、(1,0),
    ∴AC=2,BC=2+1=3,
    ∵∠ABA′=90°,
    ∴ABC+∠A′BC′=90°,
    ∵∠BAC+∠ABC=90°,
    ∴∠BAC=∠A′BC′,
    ∵BA=BA′,∠ACB=∠BC′A′,
    ∴△ABC≌△BA′C′,
    ∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
    ∴点A′的坐标为(2,3).
    故答案为(2,3).
    【点睛】
    此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.

    三、解答题(共8题,共72分)
    17、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
    【解析】
    (1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
    (2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
    【详解】
    (1)如图所示,△A1B1C1即为所求.

    A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
    故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
    (2)如图所示,△CC1C2的面积是2×1=1.
    故答案为:1.
    【点睛】
    本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
    18、y=2x+1.
    【解析】
    直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
    【详解】
    ∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
    故一次函数的解析式为y=2x+1.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
    19、楼高AB为54.6米.
    【解析】
    过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.
    【详解】
    解:
    如图,过点C作CE⊥AB于E,

    则AE=CD=20,
    ∵CE====20,
    BE=CEtanα=20×tan45°=20×1=20,
    ∴AB=AE+EB=20+20≈20×2.732≈54.6(米),
    答:楼高AB为54.6米.
    【点睛】
    此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.
    20、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
    【解析】
    (1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
    (3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
    【详解】
    (1)∵OA=4
    ∴A(﹣4,0)
    ∴﹣16+8a=0
    ∴a=2,
    ∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
    ∴B(﹣1,3),
    将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
    解得,
    直线AB的解析式为y=x+4,
    ∴k=1、a=2、b=4;
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,

    由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
    ∴当x=t时,yP=﹣t2﹣4t,yN=t+4
    PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
    BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
    S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
    化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
    ∴﹣4<t<﹣1
    (3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
    ∴CD∥OA
    ∵B(﹣1,3).
    当y=3时,x=﹣3,
    ∴P(﹣3,3),
    连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,

    可证R在DT上
    ∴PN=ON=3
    ∴∠PON=∠OPN=45°
    ∴∠BPR=∠PON=45°,
    ∵OA=OC,∠AOC=90°
    ∴∠PBR=∠BAO=45°,
    ∴PO⊥AC
    ∵∠BPQ+∠CBO=180,
    ∴∠BPQ=∠BCO+∠BOC
    过点Q作QS⊥PN,垂足是S,
    ∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
    可求BR=,OR=2,
    设Q点的横坐标是m,
    当x=m时y=m+4,
    ∴SQ=m+3,PS=﹣m﹣1
    ∴,解得m=﹣.
    当x=﹣时,y=,
    Q(﹣,).
    【点睛】
    本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
    21、(1)150、45、36;(2)28.8°;(3)450人
    【解析】
    (1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
    (2)360°乘以A项目人数占总人数的比例可得;
    (3)利用总人数乘以样本中C人数所占比例可得.
    【详解】
    解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
    ∴n=36,
    故答案为:150、45、36;
    (2)A类所对应的扇形圆心角的度数为
    故答案为:28.8°;
    (3)(人)
    答:估计该社区参加碧沙岗“暴走团”的大约有450人
    【点睛】
    本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    22、100或200
    【解析】
    试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
    试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
    列方程得,
    (8+×4)=4800,
    x2﹣300x+20000=0,
    解得x1=200,x2=100;
    要使百姓得到实惠,只能取x=200,
    答:每台冰箱应降价200元.
    考点:一元二次方程的应用.
    23、100米.
    【解析】
    【分析】如图,作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.
    【详解】如图,过P点作PC⊥AB于C,

    由题意可知:∠PAC=60°,∠PBC=30°,
    在Rt△PAC中,tan∠PAC=,∴AC=PC,
    在Rt△PBC中,tan∠PBC=,∴BC=PC,
    ∵AB=AC+BC=PC+PC=10×40=400,
    ∴PC=100,
    答:建筑物P到赛道AB的距离为100米.
    【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.
    24、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小
    【解析】
    (1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;
    (2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;
    (3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.
    【详解】
    (1)抛物线的解析式为y=a(x+4)(x﹣1),
    即y=ax2+3ax﹣4a,
    ∴﹣4a=2,解得a=﹣,
    ∴抛物线解析式为y=﹣x2﹣x+2;
    (2)△ABC为直角三角形.理由如下:
    当x=0时,y=﹣x2﹣x+2=2,则C(0,2),
    ∵A(﹣4,0),B (1,0),
    ∴AC2=42+22,BC2=12+22,AB2=52=25,
    ∴AC2+BC2=AB2,
    ∴△ABC为直角三角形,∠ACB=90°;
    (3)
    抛物线的对称轴为直线x=﹣,
    连接AC交直线x=﹣于P点,如图,
    ∵PA=PB,
    ∴PB+PC=PA+PC=AC,
    ∴此时PB+PC的值最小,△PBC周长最小,
    设直线AC的解析式为y=kx+m,
    把A(﹣4,0),C(0,2)代入得,解得,
    ∴直线AC的解析式为y=x+2,
    当x=﹣时,y=x+2=,则P(﹣,)
    ∴当P点坐标为(﹣,)时,△PBC周长最小.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.

    相关试卷

    2023年河北省邯郸市丛台区育华中学中考数学三模试卷(含解析): 这是一份2023年河北省邯郸市丛台区育华中学中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河北省邯郸市育华中学中考四模数学试题(含解析): 这是一份2023年河北省邯郸市育华中学中考四模数学试题(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    河北省邯郸市邯郸市育华中学2021-2022学年中考数学五模试卷含解析: 这是一份河北省邯郸市邯郸市育华中学2021-2022学年中考数学五模试卷含解析,共26页。试卷主要包含了计算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map