2021-2022学年广州市第十中学中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列实数中,结果最大的是( )
A.|﹣3| B.﹣(﹣π) C. D.3
2.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是( )
A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
3.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )
A.1 B. C. D.
4.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16
5.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )
A.135° B.120° C.60° D.45°
6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.垂线段最短 B.经过一点有无数条直线
C.两点之间,线段最短 D.经过两点,有且仅有一条直线
7.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
人数 | 3 | 4 | 2 | 1 |
分数 | 80 | 85 | 90 | 95 |
A.85和82.5 B.85.5和85 C.85和85 D.85.5和80
8.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )
A. B. C. D.
9.计算6m3÷(-3m2)的结果是( )
A.-3m B.-2m C.2m D.3m
10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个 B.3个 C.2个 D.1个
11.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
12.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
A.(5,5) B.(5,4) C.(6,4) D.(6,5)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若式子有意义,则实数x的取值范围是_______.
14.如果,那么=_____.
15.分解因式:x3y﹣2x2y+xy=______.
16.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______
17.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.
18.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 |
| 4.5 | 6 |
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
20.(6分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
21.(6分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:
成绩x分 | 人数 | 频率 |
25≤x<30 | 4 | 0.08 |
30≤x<35 | 8 | 0.16 |
35≤x<40 | a | 0.32 |
40≤x<45 | b | c |
45≤x<50 | 10 | 0.2 |
(1)求此次抽查了多少名学生的成绩;
(2)通过计算将频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.
22.(8分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
(2)如图,在中,,,为边的中点,于点,交于,求的值
(3)如图,中,,为边的中点,于点,交于,若,,求.
23.(8分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=,求⊙O的半径.
24.(10分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.
25.(10分)如图,∠MON的边OM上有两点A、B在∠MON的内部求作一点P,使得点P到∠MON的两边的距离相等,且△PAB的周长最小.(保留作图痕迹,不写作法)
26.(12分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
27.(12分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】
根据实数比较大小的方法,可得
<|-3|=3<-(-π),
所以最大的数是:-(-π).
故选B.
【点睛】
此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2、C
【解析】
试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
由题意得,解得
故选C.
考点:一元二次方程的根的判别式
点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
3、B
【解析】
试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,
此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.
故选B.
考点:1.概率公式;2.完全平方式.
4、C
【解析】
试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.
∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,
∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.
5、B
【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵CB=CE,
∴∠CBE=∠CEB,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°,
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选B.
【点睛】
此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
6、C
【解析】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
7、B
【解析】
根据众数及平均数的定义,即可得出答案.
【详解】
解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
故选:B.
【点睛】
本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.
8、D
【解析】
根据中心对称图形的定义解答即可.
【详解】
选项A不是中心对称图形;
选项B不是中心对称图形;
选项C不是中心对称图形;
选项D是中心对称图形.
故选D.
【点睛】
本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.
9、B
【解析】
根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
【详解】
6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
故选B.
10、B
【解析】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
故选:B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
11、A
【解析】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故选:A.
12、B
【解析】
由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
【详解】
解:∵四边形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y轴,AD∥BC∥x轴
∴点D坐标为(5,4)
故选B.
【点睛】
本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x≤2且x≠1
【解析】
根据被开方数大于等于1,分母不等于1列式计算即可得解.
【详解】
解:由题意得,且x≠1,
解得且x≠1.
故答案为且x≠1.
【点睛】
本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
14、
【解析】
试题解析:
设a=2t,b=3t,
故答案为:
15、xy(x﹣1)1
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=xy(x1-1x+1)=xy(x-1)1.
故答案为:xy(x-1)1
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
16、1
【解析】
根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
【详解】
∵DE∥BC,
∴.
∵,CE=11,
∴,解得AE=1.
故答案为1.
【点睛】
本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
17、3
【解析】
先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.
【详解】
∵四边形ABCD是矩形,∴∠A=90°.
∵AB=8,AD=6,∴BD1.
∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.
故答案为:3.
【点睛】
本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
18、5.
【解析】
试题解析:过E作EM⊥AB于M,
∵四边形ABCD是正方形,
∴AD=BC=CD=AB,
∴EM=AD,BM=CE,
∵△ABE的面积为8,
∴×AB×EM=8,
解得:EM=4,
即AD=DC=BC=AB=4,
∵CE=3,
由勾股定理得:BE==5.
考点:1.正方形的性质;2.三角形的面积;3.勾股定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
20、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
21、(1)50;(2)详见解析;(3)220.
【解析】
(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;
(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;
(3)先得到成绩优秀的频率,再乘以500即可求解.
【详解】
解:(1)4÷0.08=50(名).
答:此次抽查了50名学生的成绩;
(2)a=50×0.32=16(名),
b=50﹣4﹣8﹣16﹣10=12(名),
c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,
如图所示:
(3)500×(0.24+0.2)
=500×0.44
=220(名).
答:本次测试九年级学生中成绩优秀的人数是220名.
【点睛】
本题主要考查数据的收集、 处理以及统计图表。
22、 (1)相等,理由见解析;(2)2;(3).
【解析】
(1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
(2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
(3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
【详解】
解:(1)BF=AE,理由:
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,
∴△ABF≌△DAE,
∴BF=AE,
(2) 如图2,
过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,
∴四边形ABCM是平行四边形,
∵∠ABC=90°,
∴▱ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵点D是BC中点,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,
∴
(3) 如图3,
在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵点D是BC中点,
∴BD=BC=2,
过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
∴四边形ABCN是平行四边形,
∵∠ABC=90°,∴▱ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,
∴
∴
∴CP=
同(2)的方法,△CFP∽△AFB,
∴
∴
∴CF=.
【点睛】
本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
23、(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.
【解析】
(1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;
(2)连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴=AD•DE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==2.
∴半径为1.1
24、(1)﹣10;(2)∠EFC=72°.
【解析】
(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.
【详解】
(1)原式=﹣1﹣18+9=﹣10;
(2)由折叠得:∠EFM=∠EFC,
∵∠EFM=2∠BFM,
∴设∠EFM=∠EFC=x,则有∠BFM=x,
∵∠MFB+∠MFE+∠EFC=180°,
∴x+x+x=180°,
解得:x=72°,
则∠EFC=72°.
【点睛】
本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.
25、详见解析
【解析】
作∠MON的角平分线OT,在ON上截取OA′,使得OA′=OA,连接BA′交OT于点P,点P即为所求.
【详解】
解:如图,点P即为所求.
【点睛】
本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题.
26、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
27、 (1)y=2x+2(2)这位乘客乘车的里程是15km
【解析】
(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
(2)将y=32代入(1)的解析式就可以求出x的值.
【详解】
(1)由图象得:
出租车的起步价是8元;
设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得
,
解得:
故y与x的函数关系式为:y=2x+2;
(2)∵32元>8元,
∴当y=32时,
32=2x+2,
x=15
答:这位乘客乘车的里程是15km.
湖北省黄石市第十四中学2021-2022学年中考押题数学预测卷含解析: 这是一份湖北省黄石市第十四中学2021-2022学年中考押题数学预测卷含解析,共15页。试卷主要包含了已知点 A,下列事件中为必然事件的是,下列计算正确的是等内容,欢迎下载使用。
2021-2022学年宁德市重点中学中考数学押题卷含解析: 这是一份2021-2022学年宁德市重点中学中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析: 这是一份2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,如果,下列计算正确的是,运用图形变化的方法研究下列问题,在中,,,下列结论中,正确的是等内容,欢迎下载使用。