


广西专用高考数学一轮复习考点规范练57坐标系与参数方程含解析新人教A版文
展开考点规范练57 坐标系与参数方程
基础巩固
1.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.
2.在平面直角坐标系中,已知点A(10,0),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线M的参数方程为(α∈[0,π]为参数),曲线N的极坐标方程为ρ(1-cos θ)=2.
(1)求曲线M的极坐标方程;
(2)设曲线M与曲线N的交点为P,Q,求|OP|+|OQ|的值.
3.已知曲线C1的参数方程为(t为参数),曲线C2的参数方程为(α为参数),以直角坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)射线θ=与曲线C1和曲线C2分别交于M,N,已知点Q(4,0),求△QMN的面积.
4.在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
5.在平面直角坐标系xOy中,曲线C的参数方程为(t为参数,且t≠1),C与坐标轴交于A,B两点.
(1)求|AB|;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.
能力提升
6.(2021全国Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为(1,0),M为曲线C上的动点,点P满足,写出P的轨迹C1的参数方程,并判断曲线C与轨迹C1是否有公共点.
7.在平面直角坐标系xOy中,曲线C的参数方程为(α或t为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cos θ+sin θ)=1.
(1)当t为参数,α=时,判断曲线C与直线l的位置关系;
(2)当α为参数,t=2时,直线l与曲线C交于A,B两点,设P(1,0),求的值.
高考预测
8.(2021广西柳州一模)在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ(1-cos 2θ)=4cos θ.
(1)求直线l的普通方程,曲线C的直角坐标方程.
(2)设直线l与曲线C相交于P,Q两点,点M(,0),求|PM|2+|QM|2的值.
答案:
1.解椭圆C的普通方程为x2+=1.
将直线l的参数方程(t为参数)代入x2+=1,得=1,
即7t2+16t=0,解得t1=0,t2=-.
所以AB=|t1-t2|=.
2.解(1)因为曲线M的参数方程为(α∈[0,π]为参数),
所以曲线M是以(5,0)为圆心,5为半径的圆的上半部分.
所以曲线M的极坐标方程为ρ=10cosθ.
(2)设P(ρ1,θ1),Q(ρ2,θ2).由
得ρ2-10ρ+20=0.
所以ρ1+ρ2=10.所以|OP|+|OQ|的值是10.
3.解(1)由曲线C1的参数方程得x2-y2==1,
即曲线C1的直角坐标系方程为x2-y2=1(x≠-1),化为极坐标方程为ρ2cos2θ=1(θ≠π).
由曲线C2的参数方程可得(x-2)2+y2=(2cosα)2+(2sinα)2=4,化为极坐标方程为(ρcosθ-2)2+ρ2sin2θ=4,即ρ=4cosθ.
(2)设M,N,可得
|MN|=|ρ1-ρ2|=4cos=2,
点Q到直线MN的距离d=sin×4=2,S△QMN=×2×(2)=2.
4.解(1)曲线C的直角坐标方程为=1.
当cosα≠0时,l的直角坐标方程为y=tanα·x+2-tanα,
当cosα=0时,l的直角坐标方程为x=1.
(2)将l的参数方程代入C的直角坐标方程,
整理得关于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0.①
因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.
又由①得t1+t2=-,故2cosα+sinα=0,
于是直线l的斜率k=tanα=-2.
5.解(1)因为t≠1,由2-t-t2=0得t=-2,
所以C与y轴的交点为(0,12);
由2-3t+t2=0得t=2,
所以C与x轴的交点为(-4,0).
故|AB|=4.
(2)由(1)可知,直线AB的直角坐标方程为=1,将x=ρcosθ,y=ρsinθ代入,得直线AB的极坐标方程为3ρcosθ-ρsinθ+12=0.
6.解(1)由已知得ρ2=2ρcosθ,则曲线C的直角坐标方程为x2+y2=2x,即(x-)2+y2=2.
(2)设点P(x,y),M(x0,y0),
由,得(x-1,y)=(x0-1,y0),
即x0=x+1-,y0=y.
又点M在曲线C上,所以x+1-2+=2,即(x+-3)2+y2=4.
所以轨迹C1是以(3-,0)为圆心,2为半径的圆,所以轨迹C1的参数方程为(α为参数).
两圆的圆心分别为(,0),(3-,0),半径分别为和2,两圆心的距离是3-2,半径之差为2-,显然3-2<2-,所以两圆内含,两圆没有公共点.
7.解(1)当t为参数,α=,
曲线C的参数方程为(t为参数),
化简得(t为参数),
消掉参数得y=-x-.
因为直线l的极坐标方程为ρ(cosθ+sinθ)=1,
化为直角坐标方程为y=-x+,
曲线C与直线l斜率相等,截距不相等,所以它们平行.
(2)当α为参数,t=2时,曲线C的参数方程为
(α为参数),
化为普通方程得(x-1)2+(y+)=4,
由(1)知直线l的斜率为-,直线l过点P(1,0),
所以直线l的倾斜角为150°,
所以直线l的参数方程为(t为参数),
即(t为参数).
联立直线l的参数方程与曲线C的普通方程得t2+t-1=0.
设A,B两点对应的参数分别为t1,t2,
所以t1+t2=-,t1t2=-1,
所以.
8.解(1)由(t为参数),可得x=-y,即x+y-=0,
所以直线l的普通方程为x+y-=0.
由ρ(1-cos2θ)=4cosθ可得ρ×2sin2θ=4cosθ,
即ρsin2θ=2cosθ,所以(ρsinθ)2=2ρcosθ.
因为x=ρcosθ,y=ρsinθ,所以y2=2x.曲线C的直角坐标方程为y2=2x.
(2)将直线l的普通方程化为标准参数方程为(t为参数),
代入曲线C:y2=2x,整理可得t2+2t-4=0,
Δ=(2)2-4×1×(-4)=8+16>0.
设t1,t2是方程的两个实数根,P,Q两点对应的参数分别为t1,t2,则t1+t2=-2,t1t2=-4.
所以|PM|2+|QM|2==(t1+t2)2-2t1t2=8+8.
高考数学一轮复习考点规范练65坐标系与参数方程含解析新人教A版理: 这是一份高考数学一轮复习考点规范练65坐标系与参数方程含解析新人教A版理,共7页。
广西专用高考数学一轮复习考点规范练51随机抽样含解析新人教A版文: 这是一份广西专用高考数学一轮复习考点规范练51随机抽样含解析新人教A版文,共6页。
广西专用高考数学一轮复习考点规范练50算法初步含解析新人教A版文: 这是一份广西专用高考数学一轮复习考点规范练50算法初步含解析新人教A版文,共15页。试卷主要包含了如图,若程序框图的输出值y∈等内容,欢迎下载使用。