


【华师大版】山西省汾西县2022年中考猜题数学试卷含解析
展开
这是一份【华师大版】山西省汾西县2022年中考猜题数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
2.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
3.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )
A. B. C. D.
4.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
A.2 B.﹣2 C.4 D.﹣4
5.半径为的正六边形的边心距和面积分别是( )
A., B.,
C., D.,
6.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).
A.众数 B.中位数 C.平均数 D.方差
7.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
,其中正确的结论
A.只有①②. B.只有①③. C.只有②③. D.①②③.
8.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )
A.2011年我国的核电发电量占总发电量的比值约为1.5%
B.2006年我国的总发电量约为25000亿千瓦时
C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
D.我国的核电发电量从2008年开始突破1000亿千瓦时
9.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
A.-1或4 B.-1或-4
C.1或-4 D.1或4
10.一个几何体的三视图如图所示,则该几何体的形状可能是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
12.不等式组的解是____.
13.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.
14.在矩形ABCD中,AB=4, BC=3, 点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.
15.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_____.
16.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .
17.若代数式的值不小于代数式的值,则x的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
19.(5分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).
(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.
(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.
20.(8分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:
(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?
(2)扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图.
(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.
21.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
22.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.
(1)若点的横坐标为,求的面积;(用含的式子表示)
(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
23.(12分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.
24.(14分)如图,分别与相切于点,点在上,且,,垂足为.
求证:;若的半径,,求的长
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
2、D
【解析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
A、不是轴对称图形,故A不符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、是轴对称图形,故D符合题意.
故选D.
【点睛】
本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3、C
【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
【详解】
根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
故选:C.
【点睛】
此题考查函数的图象,解题关键在于观察图形
4、D
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
【详解】
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO= ,
∴=,
∴ = ,即 ,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.
【点睛】
此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
5、A
【解析】
首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
【详解】
解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,
∵六边形ABCDEF是正六边形,半径为,
∴∠BOC=,
∵OB=OC=R,
∴△OBC是等边三角形,
∴BC=OB=OC=R,
∵OH⊥BC,
∴在中,,
即,
∴,即边心距为;
∵,
∴S正六边形=,
故选:A.
【点睛】
本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
6、B
【解析】
分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.
详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数
7、D
【解析】
解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
则△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN.
S四边形CMGN=1S△CMG,
∵∠CGM=60°,
∴GM=CG,CM=CG,
∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.
③过点F作FP∥AE于P点.
∵AF=1FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=1AE,
∴FP:BE=1:6=FG:BG,
即 BG=6GF.
故选D.
8、B
【解析】
由折线统计图和条形统计图对各选项逐一判断即可得.
【详解】
解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
故选:B.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
9、C
【解析】
试题解析:∵x=-2是关于x的一元二次方程的一个根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得 a1=-2,a2=1.
即a的值是1或-2.
故选A.
点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
10、D
【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
考点:由三视图判断几何体.
视频
二、填空题(共7小题,每小题3分,满分21分)
11、144°
【解析】
根据多边形内角和公式计算即可.
【详解】
解:由题知,这是一个10边形,根据多边形内角和公式:
每个内角等于.
故答案为:144°.
【点睛】
此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.
12、
【解析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
解不等式①,得x>1,
解不等式②,得x≤1,
所以不等式组的解集是1<x≤1,
故答案是:1<x≤1.
【点睛】
考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
13、7秒或25秒.
【解析】
考点:勾股定理;等腰三角形的性质.
专题:动点型;分类讨论.
分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
解答:解:如图,作AD⊥BC,交BC于点D,
∵BC=8cm,
∴BD=CD=BC=4cm,
∴AD==3,
分两种情况:当点P运动t秒后有PA⊥AC时,
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴点P运动的时间为7秒或25秒.
点评:本题利用了等腰三角形的性质和勾股定理求解.
14、或
【解析】
①点A落在矩形对角线BD上,如图1,
∵AB=4,BC=3,
∴BD=5,
根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,
∴(4﹣x)2=x2+22,
解得:x=,∴AP=;
②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,
∴△DAP∽△ABC,
∴,
∴AP===.
故答案为或.
15、1
【解析】
根据白球的概率公式=列出方程求解即可.
【详解】
不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,
根据古典型概率公式知:P(白球)==.
解得:n=1,
故答案为1.
【点睛】
此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
16、0或1
【解析】
分析:需要分类讨论:
①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;
②若m≠0,则函数y=mx2+2x+1是二次函数,
根据题意得:△=4﹣4m=0,解得:m=1。
∴当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。
17、x≥
【解析】
根据题意列出不等式,依据解不等式得基本步骤求解可得.
【详解】
解:根据题意,得:,
6(3x﹣1)≥5(1﹣5x),
18x﹣6≥5﹣25x,
18x+25x≥5+6,
43x≥11,
x≥,
故答案为x≥.
【点睛】
本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.
三、解答题(共7小题,满分69分)
18、(1);(2)
【解析】
(1)根据可能性只有男孩或女孩,直接得到其概率;
(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
【详解】
解:(1)(1)第二个孩子是女孩的概率=;
故答案为;
(2)画树状图为:
共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
所以至少有一个孩子是女孩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
19、(1)y1=-20x+1200, 800;(2)15≤x≤40.
【解析】
(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.
【详解】
解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-20×20+1200=800,
(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y1+y2=-20x+1200+25x-500=5x+700,
由题意
解得该不等式组的解集为15≤x≤40
所以发生严重干旱时x的范围为15≤x≤40.
【点睛】
此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.
20、(1)50万人;(2)43.2°;统计图见解析(3).
【解析】
(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;
(2)先用360°乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待
游客数补全条形统计图;
(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概
率公式进行计算,即可得到同时选择去同一景点的概率.
【详解】
解:(1)该市景点共接待游客数为:15÷30%=50(万人);
(2)扇形统计图中E景点所对应的圆心角的度数是:×360°=43.2°,
B景点的人数为50×24%=12(万人)、D景点的人数为50×18%=9(万人),
补全条形统计图如下:
故答案为43.2°;
(3)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴P(同时选择去同一个景点)
【点睛】
本题考查的是统计以及用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
21、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【解析】
根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
【详解】
(1).
(2) 根据题意,得:
∵
∴当时,随x的增大而增大
∵
∴当时,取得最大值,最大值是144
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
熟悉掌握图中所给信息以及列方程组是解决本题的关键.
22、(1);(2)不能成为平行四边形,理由见解析
【解析】
(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
【详解】
解:(1)∵点在直线上,
∴.
∵点在的图像上,
∴,∴.
设,
则.
∵∴.
记的面积为,
∴
.
(2)当点为中点时,其坐标为,
∴.
∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
∴,
∴,
∴与不能互相平分,
∴四边形不能成为平行四边形.
【点睛】
本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
23、(1);(2)(,0)或
【解析】
(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
【详解】
解:(1)把A(2,n)代入直线解析式得:n=3,
∴A(2,3),
把A坐标代入y=,得k=6,
则双曲线解析式为y=.
(2)对于直线y=x+2,
令y=0,得到x=-4,即C(-4,0).
设P(x,0),可得PC=|x+4|.
∵△ACP面积为5,
∴|x+4|•3=5,即|x+4|=2,
解得:x=-或x=-,
则P坐标为或.
24、(1)见解析(2)5
【解析】
解:(1)证明:如图,连接,则.
∵,
∴.
∵,
∴四边形是平行四边形.
∴.
(2)连接,则.
∵,,,
∴,.
∴.
∴.
设,则.
在中,有.
∴.即.
相关试卷
这是一份山西省晋中学市重点名校2022年中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,2016的相反数是等内容,欢迎下载使用。
这是一份2022年山西省朔州市达标名校中考猜题数学试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算等内容,欢迎下载使用。
这是一份2021-2022学年山西省永济市重点达标名校中考猜题数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列各式计算正确的是等内容,欢迎下载使用。
