搜索
    上传资料 赚现金
    英语朗读宝

    2022年山西省汾西县中考考前最后一卷数学试卷含解析

    2022年山西省汾西县中考考前最后一卷数学试卷含解析第1页
    2022年山西省汾西县中考考前最后一卷数学试卷含解析第2页
    2022年山西省汾西县中考考前最后一卷数学试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山西省汾西县中考考前最后一卷数学试卷含解析

    展开

    这是一份2022年山西省汾西县中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了抛物线的顶点坐标是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.4的平方根是(  )
    A.2 B.±2 C.8 D.±8
    2.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )
    A. B. C. D.
    3.的相反数是 ( )
    A. B. C.3 D.-3
    4.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为(  )

    A.56×108 B.5.6×108 C.5.6×109 D.0.56×1010
    5.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为(  )

    A.π B.π C.π D.π
    6.抛物线的顶点坐标是( )
    A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)
    7.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为(  )
    A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
    8.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
    A. B.
    C. D.
    9.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是(  )

    A. B. C. D.
    10.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为(  )

    A.16cm B.20cm C.24cm D.28cm
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.
    12.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.

    13.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.

    14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
    《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
    译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
    设每头牛值金x两,每只羊值金y两,可列方程组为_____.

    15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_____人.

    16.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.

    三、解答题(共8题,共72分)
    17.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
    请根据图中提供的信息,回答下列问题:a=   %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?

    18.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.

    19.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.

    20.(8分)计算:+(﹣ )﹣1+|1﹣|﹣4sin45°.
    21.(8分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?
    22.(10分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.

    23.(12分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
    24.填空并解答:
    某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.
    (1)问哪一位“新顾客”是第一个不需要排队的?
    分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.

    a1
    a2
    a3
    a4
    a5
    a6
    c1
    c2
    c3
    c4

    到达窗口时刻
    0
    0
    0
    0
    0
    0
    1
    6
    11
    16

    服务开始时刻
    0
    2
    4
    6
    8
    10
    12
    14
    16
    18

    每人服务时长
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2

    服务结束时刻
    2
    4
    6
    8
    10
    12
    14
    16
    18
    20

    根据上述表格,则第   位,“新顾客”是第一个不需要排队的.
    (2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.
    分析:第n个“新顾客”到达窗口时刻为   ,第(n﹣1)个“新顾客”服务结束的时刻为   .



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    依据平方根的定义求解即可.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选B.
    【点睛】
    本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
    2、A
    【解析】
    ∵Rt△ABC中,∠C=90°,sinA=,
    ∴cosA=,
    ∴∠A+∠B=90°,
    ∴sinB=cosA=.
    故选A.
    3、B
    【解析】
    先求的绝对值,再求其相反数:
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;
    相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.
    4、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.
    【详解】
    56亿=56×108=5.6×101,
    故选C.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    5、A
    【解析】
    利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.
    【详解】
    解:∵PA切⊙O于点A,
    ∴OA⊥PA,
    ∴∠OAP=90°,
    ∵∠C=∠O,∠P=∠C,
    ∴∠O=2∠P,
    而∠O+∠P=90°,
    ∴∠O=60°,
    ∴劣弧AB的长=.
    故选:A.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.
    6、A
    【解析】
    已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.
    【详解】
    解:y=(x-2)2+3是抛物线的顶点式方程,
    根据顶点式的坐标特点可知,顶点坐标为(2,3).
    故选A.
    【点睛】
    此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.
    7、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1100万=11000000=1.1×107.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、A
    【解析】
    根据二次函数的平移规律即可得出.
    【详解】
    解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
    故答案为:A.
    【点睛】
    本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
    9、D
    【解析】
    根据一次函数的性质结合题目中的条件解答即可.
    【详解】
    解:由题可得,水深与注水量之间成正比例关系,
    ∴随着水的深度变高,需要的注水量也是均匀升高,
    ∴水瓶的形状是圆柱,
    故选:D.
    【点睛】
    此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.
    10、C
    【解析】
    首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
    【详解】
    ∵长方形ABCD中,AB∥CD,
    ∴∠BAC=∠DCA,
    又∵∠BAC=∠EAC,
    ∴∠EAC=∠DCA,
    ∴FC=AF=25cm,
    又∵长方形ABCD中,DC=AB=32cm,
    ∴DF=DC-FC=32-25=7cm,
    在直角△ADF中,AD==24(cm).
    故选C.
    【点睛】
    本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值

    相关试卷

    山西省长治市名校2022年中考考前最后一卷数学试卷含解析:

    这是一份山西省长治市名校2022年中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2022年山西省太原市志达中学中考考前最后一卷数学试卷含解析:

    这是一份2022年山西省太原市志达中学中考考前最后一卷数学试卷含解析,共16页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。

    2022届山西省(运城地区)中考数学考前最后一卷含解析:

    这是一份2022届山西省(运城地区)中考数学考前最后一卷含解析,共24页。试卷主要包含了在直角坐标系中,已知点P,运用图形变化的方法研究下列问题,下列运算结果正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map