|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年山西省运城中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年山西省运城中考猜题数学试卷含解析01
    2021-2022学年山西省运城中考猜题数学试卷含解析02
    2021-2022学年山西省运城中考猜题数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山西省运城中考猜题数学试卷含解析

    展开
    这是一份2021-2022学年山西省运城中考猜题数学试卷含解析,共21页。试卷主要包含了cs45°的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列图形中是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    2.如果零上2℃记作+2℃,那么零下3℃记作( )
    A.-3℃ B.-2℃ C.+3℃ D.+2℃
    3.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是(  )
    A.6π B.4π C.8π D.4
    4.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为(  )

    A.45° B.60° C.70° D.90°
    5.cos45°的值是(     )
    A.                                         B.                                         C.                                         D.1
    6.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(  )
    A.30° B.60° C.120° D.180°
    7.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    8.关于x的不等式组无解,那么m的取值范围为( )
    A.m≤-1 B.m<-1 C.-1 9.等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )
    A.9 B.10 C.9或10 D.8或10
    10.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是(  )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.
    12.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.
    13.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.

    14.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).

    15.在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点.若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_____.
    16.=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
    操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
    ②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是 .猜想论证
    当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
    已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
    18.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
    (1)求证:四边形ACDF是平行四边形;
    (2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    19.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:

    甲种
    乙种
    丙种
    进价(元/台)
    1200
    1600
    2000
    售价(元/台)
    1420
    1860
    2280
    经预算,商场最多支出132000元用于购买这批电冰箱.
    (1)商场至少购进乙种电冰箱多少台?
    (2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?
    20.(8分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
    (3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.

    21.(8分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
    (2)解方程:x(x﹣4)=2x﹣8
    22.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
    (1)求一次函数与反比例函数的解析式;
    (2)求△AOB的面积.

    23.(12分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.

    24.如图,,,,,交于点.求的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误.
    故选:C.
    点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、A
    【解析】
    一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
    【详解】
    ∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
    故选A.
    3、A
    【解析】
    根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
    解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
    那么它的表面积=2π×2+π×1×1×2=6π,故选A.
    4、D
    【解析】
    已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.
    5、C
    【解析】
    本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
    【详解】
    cos45°= .
    故选:C.
    【点睛】
    本题考查特殊角的三角函数值.
    6、C
    【解析】
    求出正三角形的中心角即可得解
    【详解】
    正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,
    故选C.
    【点睛】
    本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键
    7、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    8、A
    【解析】
    【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.
    【详解】,
    解不等式①得:x 解不等式②得:x>-1,
    由于原不等式组无解,所以m≤-1,
    故选A.
    【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.
    9、B
    【解析】
    由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.
    故选B
    10、D
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
    【详解】
    ∵CD是AB边上的中线,
    ∴CD=AD,
    ∴∠A=∠ACD,
    ∵∠ACB=90°,BC=6,AC=8,
    ∴tan∠A=,
    ∴tan∠ACD的值.
    故选D.
    【点睛】
    本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
    【详解】
    解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为=.
    故答案为:.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
    12、
    【解析】
    mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),
    故答案为n(n-m)(m+1).
    13、1
    【解析】
    根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
    【详解】
    ∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
    ∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
    ∴∠ACB=2∠B,NM=NC,
    ∴∠B=30°,
    ∵AN=1,
    ∴MN=2,
    ∴AC=AN+NC=3,
    ∴BC=1,
    故答案为1.
    【点睛】
    本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    14、4﹣π
    【解析】
    由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.
    【详解】
    解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,
    ∴AC=BC=AB•sin45°=AB=2,
    ∴S△ABC=AC•BC=4,
    ∵点D为AB的中点,
    ∴AD=BD=AB=2,
    ∴S扇形EAD=S扇形FBD=×π×22=π,
    ∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.
    故答案为:4﹣π.
    【点睛】
    此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.
    15、
    【解析】
    设PM=x,根据黄金分割的概念列出比例式,计算即可.
    【详解】
    设PM=x,则PN=1-x,
    由得,,
    化简得:x2+x-1=0,
    解得:x1=,x2=(负值舍去),
    所以PM的长为.
    【点睛】
    本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.
    16、1
    【解析】
    分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.
    详解:原式=1+2﹣2
    =1.
    故答案为:1.
    点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.

    三、解答题(共8题,共72分)
    17、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.
    【解析】
    (1)①由旋转可知:AC=DC,
    ∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.
    ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.
    ②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.

    由①可知:△ADC是等边三角形, DE∥AC,∴DN=CF,DN=EM.
    ∴CF=EM.
    ∵∠C=90°,∠B =30°
    ∴AB=1AC.
    又∵AD=AC
    ∴BD=AC.

    ∴.
    (1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
    ∵△DEC是由△ABC绕点C旋转得到,
    ∴BC=CE,AC=CD,
    ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
    ∴∠ACN=∠DCM,
    ∵在△ACN和△DCM中, ,
    ∴△ACN≌△DCM(AAS),
    ∴AN=DM,
    ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
    即S1=S1;
    (3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF1⊥BD,
    ∵∠ABC=20°,F1D∥BE,
    ∴∠F1F1D=∠ABC=20°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
    ∴∠F1DF1=∠ABC=20°,
    ∴△DF1F1是等边三角形,
    ∴DF1=DF1,过点D作DG⊥BC于G,
    ∵BD=CD,∠ABC=20°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×20°=30°,BG=BC=,
    ∴BD=3
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF1=320°-150°-20°=150°,
    ∴∠CDF1=∠CDF1,
    ∵在△CDF1和△CDF1中,

    ∴△CDF1≌△CDF1(SAS),
    ∴点F1也是所求的点,
    ∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×20°=30°,
    又∵BD=3,
    ∴BE=×3÷cos30°=3,
    ∴BF1=3,BF1=BF1+F1F1=3+3=2,
    故BF的长为3或2.

    18、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    19、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
    【解析】
    (1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;
    (2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.
    【详解】
    (1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.
    根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,
    解得:x≥14,
    ∴商场至少购进乙种电冰箱14台;
    (2)由题意得:2x≤80﹣3x且x≥14,
    ∴14≤x≤16,
    ∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,
    ∴W随x的增大而减小,
    ∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,
    此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
    【点睛】
    本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.
    20、 (1) ;(2) 和;(3)
    【解析】
    (1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
    (3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
    【详解】
    解:设,,则是方程的两根,
    ∴.
    ∵已知抛物线与轴交于点.

    在△中:,在△中:,
    ∵△为直角三角形,由题意可知∠°,
    ∴,
    即,
    ∴,
    ∴,
    解得:,
    又,
    ∴.
    由可知:,令则,
    ∴,
    ∴.
    ①以为边,以点、、、Q为顶点的四边形是四边形时,
    设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,

    即∠°∠.
    ∵四边形为平行四边形,
    ∴∥,又l∥轴,
    ∴∠∠=∠,
    ∴△≌△,
    ∴,
    ∴点的横坐标为,

    即点坐标为.
    ②当以为边,以点、、、Q为顶点的四边形是四边形时,

    设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
    即∠°∠.
    ∵四边形为平行四边形,
    ∴∥,又l∥轴,
    ∴∠∠=∠,
    ∴△≌△,
    ∴,
    ∴点的横坐标为,

    即点坐标为
    ∴符合条件的点坐标为和.
    过点作DH⊥轴于点,
    ∵::,
    ∴::.
    设,则点坐标为,
    ∴.
    ∵点在抛物线上,
    ∴点坐标为,
    由(1)知,
    ∴,
    ∵∥,
    ∴△∽△,

    ∴,
    ∴,
    即①,
    又在抛物线上,
    ∴②,
    将②代入①得:,
    解得(舍去),
    把代入②得:.
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    21、(1)3;(1)x1=4,x1=1.
    【解析】
    (1)根据有理数的混合运算法则计算即可;
    (1)先移项,再提取公因式求解即可.
    【详解】
    解:(1)原式=8×(﹣)﹣4×+1
    =8×﹣1+1
    =3;
    (1)移项得:x(x﹣4)﹣1(x﹣4)=0,
    (x﹣4)(x﹣1)=0,
    x﹣4=0,x﹣1=0,
    x1=4,x1=1.
    【点睛】
    本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
    22、(1)y=-,y=-2x-4(2)1
    【解析】
    (1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
    (2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
    【详解】
    (1)将A(﹣3,m+1)代入反比例函数y=得,
    =m+1,
    解得m=﹣6,
    m+1=﹣6+1=2,
    所以,点A的坐标为(﹣3,2),
    反比例函数解析式为y=﹣,
    将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
    解得n=1,
    所以,点B的坐标为(1,﹣6),
    将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

    解得,
    所以,一次函数解析式为y=﹣2x﹣4;
    (2)设AB与x轴相交于点C,
    令﹣2x﹣4=0解得x=﹣2,
    所以,点C的坐标为(﹣2,0),
    所以,OC=2,
    S△AOB=S△AOC+S△BOC,
    =×2×2+×2×6,
    =2+6,
    =1.
    考点:反比例函数与一次函数的交点问题.
    23、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
    24、
    【解析】
    试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.
    解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.
    在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.
    在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.

    相关试卷

    山西省乡宁县2021-2022学年中考数学猜题卷含解析: 这是一份山西省乡宁县2021-2022学年中考数学猜题卷含解析,共27页。试卷主要包含了民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。

    山西省(大同)重点名校2021-2022学年中考数学猜题卷含解析: 这是一份山西省(大同)重点名校2021-2022学年中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是等内容,欢迎下载使用。

    2021-2022学年重庆市渝北区中考猜题数学试卷含解析: 这是一份2021-2022学年重庆市渝北区中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map