|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年安徽省合肥市包河区第48中学中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年安徽省合肥市包河区第48中学中考猜题数学试卷含解析01
    2021-2022学年安徽省合肥市包河区第48中学中考猜题数学试卷含解析02
    2021-2022学年安徽省合肥市包河区第48中学中考猜题数学试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽省合肥市包河区第48中学中考猜题数学试卷含解析

    展开
    这是一份2021-2022学年安徽省合肥市包河区第48中学中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列图标中,是中心对称图形的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如下图所示,该几何体的俯视图是 ( )

    A. B. C. D.
    2.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是(  )

    A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570
    3.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为(  )

    A.80° B.70° C.60° D.40°
    4.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为( )

    A.2 B.3 C.4 D.6
    5.下列运算正确的是(  )
    A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2
    6.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为(  )

    A.12cm B.12cm C.24cm D.24cm
    7.对于非零的两个实数、,规定,若,则的值为( )
    A. B. C. D.
    8.下列图标中,是中心对称图形的是(  )
    A. B.
    C. D.
    9.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是(  )

    A. B. C. D.
    10.半径为的正六边形的边心距和面积分别是(  )
    A., B.,
    C., D.,
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m1.

    12.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.

    13.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.
    14.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
        .

    15.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.

    16.分解因式:= .
    三、解答题(共8题,共72分)
    17.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
    (1)求证:△DCE≌△BFE;
    (2)若AB=4,tan∠ADB=,求折叠后重叠部分的面积.

    18.(8分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.

    19.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).

    20.(8分)分式化简:(a-)÷
    21.(8分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:

    (1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
    (2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
    (3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
    22.(10分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
    23.(12分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
    分组
    频数
    频率
    0.5~50.5
       
    0.1
    50.5~   
    20
    0.2
    100.5~150.5
       
       
       200.5
    30
    0.3
    200.5~250.5
    10
    0.1
    率分布表和频率分布直方图(如图).

    (1)补全频率分布表;
    (2)在频率分布直方图中,长方形ABCD的面积是   ;这次调查的样本容量是   ;
    (3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
    24.如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
    拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据俯视图是从上面看到的图形解答即可.
    【详解】
    从上面看是三个长方形,故B是该几何体的俯视图.
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    2、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.
    3、B
    【解析】
    根据平行线的性质得到根据BE平分∠ABD,即可求出∠1的度数.
    【详解】
    解:∵BD∥AC,


    ∵BE平分∠ABD,

    故选B.
    【点睛】
    本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.
    4、C
    【解析】
    先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.
    【详解】
    解:因为垂直平分,
    所以,
    在中,,
    则;
    故选:C.
    【点睛】
    本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
    5、D
    【解析】
    根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;
    根据同底数幂相乘,可知a2•a3=a5,故不正确;
    根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;
    根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.
    故选D.
    【详解】
    请在此输入详解!
    6、D
    【解析】
    过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
    【详解】
    如图,过A作AD⊥BF于D,
    ∵∠ABD=45°,AD=12,
    ∴=12,
    又∵Rt△ABC中,∠C=30°,
    ∴AC=2AB=24,
    故选:D.

    【点睛】
    本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
    7、D
    【解析】
    试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
    考点:1.新运算;2.分式方程.
    8、B
    【解析】
    根据中心对称图形的概念 对各选项分析判断即可得解.
    【详解】
    解:A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    【点睛】
    本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9、D
    【解析】
    分析:根据主视图和俯视图之间的关系可以得出答案.
    详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
    点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
    10、A
    【解析】
    首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
    【详解】
    解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,

    ∵六边形ABCDEF是正六边形,半径为,
    ∴∠BOC=,
    ∵OB=OC=R,
    ∴△OBC是等边三角形,
    ∴BC=OB=OC=R,
    ∵OH⊥BC,
    ∴在中,,
    即,
    ∴,即边心距为;
    ∵,
    ∴S正六边形=,
    故选:A.
    【点睛】
    本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    设与墙平行的一边长为xm,则另一面为 ,
    其面积=,
    ∴最大面积为 ;
    即最大面积是2m1.
    故答案是2.
    【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.
    12、12.
    【解析】
    设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.
    【详解】
    设AD=a,则AB=OC=2a,
    ∵点D在反比例函数y=的图象上,
    ∴D(a,),
    ∴OA=,
    过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,

    ∵△OEC的面积为12,OC=2a,
    ∴EN=,
    ∴EM=MN-EN=-=;
    设ON=x,则NC=BM=2a-x,
    ∵AB∥OC,
    ∴△BME∽△ONE,
    ∴,
    即,
    解得x=,
    ∴E(,),
    ∵点E在在反比例函数y=的图象上,
    ∴·=k,
    解得k=,
    ∵k>0,
    ∴k=12.
    故答案为:12.
    【点睛】
    本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.
    13、7秒或25秒.
    【解析】
    考点:勾股定理;等腰三角形的性质.
    专题:动点型;分类讨论.
    分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
    解答:解:如图,作AD⊥BC,交BC于点D,
    ∵BC=8cm,
    ∴BD=CD=BC=4cm,
    ∴AD==3,
    分两种情况:当点P运动t秒后有PA⊥AC时,
    ∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
    ∴PD2+32=(PD+4)2-52∴PD=2.25,
    ∴BP=4-2.25=1.75=0.25t,
    ∴t=7秒,
    当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
    ∴BP=4+2.25=6.25=0.25t,
    ∴t=25秒,
    ∴点P运动的时间为7秒或25秒.
    点评:本题利用了等腰三角形的性质和勾股定理求解.
    14、-2<k<。
    【解析】
    由图可知,∠AOB=45°,∴直线OA的解析式为y=x,
    联立,消掉y得,,
    由解得,.
    ∴当时,抛物线与OA有一个交点,此交点的横坐标为1.
    ∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().
    ∴交点在线段AO上.
    当抛物线经过点B(2,0)时,,解得k=-2.
    ∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.
    【详解】
    请在此输入详解!
    15、20 cm.
    【解析】
    将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
    【详解】
    解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
    根据勾股定理,得(cm).

    故答案为:20cm.
    【点睛】
    本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
    16、a(a+2)(a-2)
    【解析】


    三、解答题(共8题,共72分)
    17、(1)见解析;(2)1
    【解析】
    (1)由矩形的性质可知∠A=∠C=90°,由翻折的性质可知∠A=∠F=90°,从而得到∠F=∠C,依据AAS证明△DCE≌△BFE即可;
    (2)由△DCE≌△BFE可知:EB=DE,依据AB=4,tan∠ADB=,即可得到DC,BC的长,然后再Rt△EDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积.
    【详解】
    解:(1)∵四边形ABCD是矩形,
    ∴∠A=∠C=90°,AB=CD,
    由折叠可得,∠F=∠A,BF=AB,
    ∴BF=DC,∠F=∠C=90°,
    又∵∠BEF=∠DEC,
    ∴△DCE≌△BFE;
    (2)∵AB=4,tan∠ADB=,
    ∴AD=8=BC,CD=4,
    ∵△DCE≌△BFE,
    ∴BE=DE,
    设BE=DE=x,则CE=8﹣x,
    在Rt△CDE中,CE2+CD2=DE2,
    ∴(8﹣x)2+42=x2,
    解得x=5,
    ∴BE=5,
    ∴S△BDE=BE×CD=×5×4=1.
    【点睛】
    本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    18、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
    【解析】
    【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
    (2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
    (3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
    【详解】(1)如图,连接OD,
    ∵BC是⊙O的直径,
    ∴∠BAC=90°,
    ∵AD平分∠BAC,
    ∴∠BAC=2∠BAD,
    ∵∠BOD=2∠BAD,
    ∴∠BOD=∠BAC=90°,
    ∵DP∥BC,
    ∴∠ODP=∠BOD=90°,
    ∴PD⊥OD,
    ∵OD是⊙O半径,
    ∴PD是⊙O的切线;
    (2)∵PD∥BC,
    ∴∠ACB=∠P,
    ∵∠ACB=∠ADB,
    ∴∠ADB=∠P,
    ∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
    ∴∠DCP=∠ABD,
    ∴△ABD∽△DCP;
    (3)∵BC是⊙O的直径,
    ∴∠BDC=∠BAC=90°,
    在Rt△ABC中,BC==13cm,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴∠BOD=∠COD,
    ∴BD=CD,
    在Rt△BCD中,BD2+CD2=BC2,
    ∴BD=CD=BC=,
    ∵△ABD∽△DCP,
    ∴,
    ∴,
    ∴CP=16.9cm.

    【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
    19、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
    【解析】
    试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;
    (2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.
    试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,
    ∴,
    设DE=5x米,则EC=12x米,
    ∴(5x)2+(12x)2=132,
    解得:x=1,
    ∴5x=5,12x=12,
    即DE=5米,EC=12米,
    故斜坡CD的高度DE是5米;
    (2)过点D作AB的垂线,垂足为H,设DH的长为x,
    由题意可知∠BDH=45°,
    ∴BH=DH=x,DE=5,
    在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,
    ∵tan64°=,
    ∴2=,
    解得,x=29,AB=x+5=34,
    即大楼AB的高度是34米.
    20、a-b
    【解析】
    利用分式的基本性质化简即可.
    【详解】
    ===.
    【点睛】
    此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
    21、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
    【解析】
    解:(1)甲每分钟生产=25只;
    提高生产速度之前乙的生产速度==15只/分,
    故乙在提高生产速度之前已生产了零件:15×10=150只;
    (2)结合后图象可得:
    甲:y甲=25x(0≤x≤20);
    乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
    乙:y乙=15x(0≤x≤10),
    当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
    10k+b=150,17k+b=500,
    解得:k=50,b=−350,
    故y乙=50x−350(10≤x≤17).
    综上可得:y甲=25x(0≤x≤20);

    (3)令y甲=y乙,得25x=50x−350,
    解得:x=14,
    此时y甲=y乙=350只,故甲工人还有150只未生产.
    22、1
    【解析】
    根据实数的混合计算,先把各数化简再进行合并.
    【详解】
    原式=1+3-2-3+2
    =1
    【点睛】
    此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
    23、⑴表格中依次填10,100.5,25,0.25,150.5,1;
    ⑵0.25,100;
    ⑶1000×(0.3+0.1+0.05)=450(名).
    【解析】
    (1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
    【详解】
    解:填表如下:

    (2)长方形ABCD的面积为0.25,样本容量是100;
    提出这项建议的人数人.
    【点睛】
    本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
    24、(1)证明见解析;(2);拓展:
    【解析】
    (1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
    (2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
    拓展:对△ABD的外心位置进行推理,即可得出结论.
    【详解】
    (1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
    ∴BD=CE,
    ∴BC-BD=BC-CE,即BE=CD,
    ∵∠B=∠C=40°,
    ∴AB=AC,
    在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS);
    (2)解:∵∠B=∠C=40°,AB=BE,
    ∴∠BEA=∠EAB=(180°-40°)=70°,
    ∵BE=CD,AB=AC,
    ∴AC=CD,
    ∴∠ADC=∠DAC=(180°-40°)=70°,
    ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
    拓展:
    解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
    ∴∠BAD=140°-∠BDA<90°.
    ∴∠BDA>50°,
    又∵∠BDA<90°,
    ∴50°<∠BDA<90°.
    【点睛】
    本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.

    相关试卷

    安徽省合肥市高新区2021-2022学年中考数学猜题卷含解析: 这是一份安徽省合肥市高新区2021-2022学年中考数学猜题卷含解析,共21页。试卷主要包含了把a•的根号外的a移到根号内得等内容,欢迎下载使用。

    安徽省合肥市包河区48中学2021-2022学年中考联考数学试题含解析: 这是一份安徽省合肥市包河区48中学2021-2022学年中考联考数学试题含解析,共21页。试卷主要包含了下列说法中,正确的是,用一根长为a等内容,欢迎下载使用。

    2022年安徽省合肥市45中学中考猜题数学试卷含解析: 这是一份2022年安徽省合肥市45中学中考猜题数学试卷含解析,共23页。试卷主要包含了下列运算结果正确的是,下列图形是中心对称图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map