|教案下载
终身会员
搜索
    上传资料 赚现金
    沪科版数学九年级上册 21.4 第2课时 建立二次函数模型解决实际问题1 教案
    立即下载
    加入资料篮
    沪科版数学九年级上册  21.4 第2课时  建立二次函数模型解决实际问题1 教案01
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年21.1 二次函数第2课时教案

    展开
    这是一份2021学年21.1 二次函数第2课时教案,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    1.能运用二次函数的知识分析解决相关实际问题;(重点、难点)
    2.经历探索解决实际问题的过程,进一步获得利用数学方法解决实际问题的经验,感受数学建模的思想和数学的应用价值.
    一、情境导入
    跳绳是同学们非常喜欢的一种体育活动,在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图,正在甩绳的甲、乙两名学生拿绳的手间距为4米,设拿绳的手此时距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米和2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,根据以上信息你能知道学生丁的身高吗?
    要解决这个问题,同学们分析一下,我们会利用哪些知识来解决?
    二、合作探究
    探究点一:二次函数在建筑问题中的应用
    如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.
    解析:如图,建立直角坐标系,设这条抛物线为y=ax2,把点(2,-2)代入,得-2=a×22,a=-eq \f(1,2),∴y=-eq \f(1,2)x2,当y=-3时,-eq \f(1,2)x2=-3,x=±eq \r(6).故答案为2eq \r(6).
    方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数解析式解决实际问题.
    探究点二:二次函数在体育活动中的应用
    【类型一】 运动轨迹问题
    某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面eq \f(20,9)米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.
    (1)建立如图所示的平面直角坐标系,问此球能否准确投中?
    (2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?
    解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x=1时函数y的值与最大摸高3.1米的大小.
    解:(1)由条件可得到出手点、最高点和篮圈的坐标分别为A(0,eq \f(20,9)),B(4,4),C(7,3),其中B是抛物线的顶点.
    设二次函数关系式为y=a(x+h)2+k,将点A、B的坐标代入,可得y=-eq \f(1,9)(x-4)2+4.
    将点C的坐标代入上式,得左边=右边,即点C在抛物线上.所以此球一定能投中;
    (2)将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.
    【类型二】 落点问题
    如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    (1)求足球开始飞出到第一次落地时,该抛物线的表达式;
    (2)足球第一次落地点C距守门员多少米(取4eq \r(3)=7)?
    (3)运动员乙要抢到第二个落点D,他应再向前跑多少米(取2eq \r(6)=5)?
    解析:要求足球开始飞出到第一次落地时,抛物线的表达式,则需要根据已知条件确定点A和顶点M的坐标,因为OA=1,OB=6,BM=4,所以点A的坐标为(0,1),顶点M的坐标是(6,4).根据顶点式可求得抛物线关系式.因为点C在x轴上,所以要求OC的长,只要把点C的纵坐标y=0代入函数关系式,通过解方程求得OC的长.要计算运动员乙要抢到第二个落点D,他应再向前跑多少米,实际就是求DB的长.求解的方法有多种.
    解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,
    由已知:当x=0时,y=1,即1=36a+4,所以a=-eq \f(1,12).
    所以函数表达式为y=-eq \f(1,12)(x-6)2+4或y=-eq \f(1,12)x2+x+1;
    (2)令y=0,则-eq \f(1,12)(x-6)2+4=0,
    所以(x-6)2=48,所以x1=4eq \r(3)+6≈13,x2=-4eq \r(3)+6<0(舍去).
    所以足球第一次落地距守门员约13米;
    (3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).
    所以2=-eq \f(1,12)(x-6)2+4,解得x1=6-2eq \r(6),x2=6+2eq \r(6),
    所以CD=|x1-x2|=4eq \r(6)≈10.
    所以BD=13-6+10=17(米).
    方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
    三、板书设计
    建立二次函数模型eq \b\lc\{(\a\vs4\al\c1(1.运动轨迹问题,2.落点问题,3.涵洞问题))
    教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决实际问题.
    相关教案

    数学八年级下册4.2 一次函数第2课时教案及反思: 这是一份数学八年级下册<a href="/sx/tb_c95364_t8/?tag_id=27" target="_blank">4.2 一次函数第2课时教案及反思</a>,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。

    初中数学沪科版九年级上册21.1 二次函数一等奖第2课时教案及反思: 这是一份初中数学沪科版九年级上册21.1 二次函数一等奖第2课时教案及反思,共6页。教案主要包含了解题过程等内容,欢迎下载使用。

    湘教版八年级下册第4章 一次函数4.5 一次函数的应用第2课时教案及反思: 这是一份湘教版八年级下册第4章 一次函数4.5 一次函数的应用第2课时教案及反思,共3页。教案主要包含了教学目标,教学重难点,教学过程,教学反思等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map