2021江苏省外国语学校高二下学期期中数学试题含答案
展开
这是一份2021江苏省外国语学校高二下学期期中数学试题含答案,共10页。试卷主要包含了04,函数的大致图象可能是,已知函数,,若,则的最大值是,已知,,若,则,给定函数,下列结论正确的是等内容,欢迎下载使用。
2020~2021学年第二学期期中调研测试 高二数学 2021.04一、单项选择题:本大题共小题,每小题分,共计40分,每小题给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题卡的相应位置上。1.函数的单调递区间为( )A. B. C. D.2.用数字0,1,2,3可以组成无重复数字的四位偶数有( )A.12个 B.10个 C.20个 D.16个3.函数的大致图象可能是( )A. B. C. D. 4.在的展开式中,只有第5项的二项式系数最大,则展开式中x的系数为( )A. B. C. D.75.已知函数的图象在处的切线与函数的图象相切,则实数( )A. B. C. D.6.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )A.315 B.640 C.840 D.50407.已知函数,,若,则的最大值是( )A. B. C. D.8.已知,,若,则( )A. B. C. D.二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.给定函数.下列说法正确的有( )A.函数在区间上单调递减,在区间上单调递增B.函数的图象与x轴有两个交点C.当时,方程有两个不同的的解D.若方程只有一个解,则10.下列结论正确的是( )A.6本不同的书分给甲、乙、丙三人,每人两本,有种不同的分法;B.6本不同的书分给甲、乙、丙三人,其中一人1本,一人2本,一人3本,有种不同的分法;C.6本相同的书分给甲、乙、丙三人,每人至少一本,有10种不同的分法;D.6本不同的书分给甲、乙、丙三人,每人至少一本,有540种不同的分法.11.设,下列结论正确的是( )A.B.C.,,,…,中最大的是D.当时,除以2000的余数是112.已知函数,下述结论正确的是( )A.存在唯一极值点,且B.存在实数a,使得C.方程有且仅有两个实数根,且两根互为倒数D.当时,函数与的图象有两个交点三、填空题:本题共4小题,每小题5分,共20分.13.二项式的展开式中,常数项为___________.14.若函数在上单调递增,则实数a的取值范围是___________.15.如图,用五种不同的颜色涂在图中不同的区域内,要求每个区域只能涂一种颜色,且相邻(有公共边)区域涂的颜色不同,则不同的涂色方案一共有__________种.(用数字作答).16.已知函数,若在上单调减函数,则实数a的最大值为_________.若,在上至少存在一点,使得成立,则实数a的最小值为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知函数,的图象在点处的切线为.(1)求函数的解析式;(2)设,求证:;18.(本题满分12分)已知从的展开式的所有项中任取两项的组合数是21。(1)求展开式中所有二项式系数之和2)若的展开式中的常数项为,求a的值。19.按照下列要求,分别求有多少种不同的方法?(列式并用数字作答)(1)5个不同的小球放入4个不同的盒子,每个盒子至少放一个小球(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.20.(本题满分12分)已知函数().(1)当时,求函数的单调区间;(2)是否存在实数a,使恒成立,若存在,求出实数a的取值范围;若不存在,说明理由.21.(本题满分12分)在杨辉三角形中,从第2行开始,除1以外,其它每一个数值是它上面的两个数值之和,该三角形数阵开头几行如图所示.第0行 1第1行 1 1第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1第6行 1 6 15 20 15 6 1(1)在杨辉三角形中是否存在某一行,使该行中三个相邻的数之比是?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n,r为正整数,且,求证:任何四个相邻的组合数,,,不能构成等差数列.22.(本题满分12分)已知函数,(a,).(1)若时,直线是曲线的一条切线,求b的值;(2)若,且在上恒成立,求a的取值范围;(3)令,且在区间上有零点,求的最小值.2020~2021学年第二学期期中调研测试 高二数学参考答案 2021.04一、单项选择题:本大题共小题,每小题分,共计40分,每小题给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题卡的相应位置上。1.B; 2.B; 3.A; 4.D; 5.B; 6.A; 7.A; 8.D二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.AC; 10.ACD; 11.ABD; 12.ACD三、填空题:本题共4小题,每小题5分,共20分.13.; 14.; 15.180; 16.(1) (2)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)【解析】(1),,····························································1分由已知得,···································································2分解得,故····································································4分(2),得.···································································6分当时,,单调递减;当时,,单调递增.····························································8分∴,从而,即.································································10分18.解析:的展开式共有项,由题意得,解得,·········································2分所以展开式中所有二项系数之和为.·················································4分(2)由(1)知,的展开式的通项为,····························································6分令,或2,解得或,····························································8分因为展开式中的常数项为,······················································10分解得.·······································································12分19.【解析】(1);······························································3分(2);或;··································································6分(3);或;··································································9分(4).或.···································································12分20.【解析】(1)函数的定义域为,,·················································1分21.【解析】(1)存在.·························································1分杨辉三角形的第n行由二项式系数,,1,2,…,n组成.若第n行中有三个相邻的数之比为3∶4∶5,则,,······································································3分即,,解得,.即第62行有三个相邻的数,,的比为3∶4∶5.········································5分(2)证明 若有n,r(),使得,,,成等差数列,则,,······································································6分即,···········································································7分所以,整理得,.两式相减得,·································································9分所以,,,成等差数.··························································10分由二项式系数的性质可知.·······················································11分这与等差数列的性质矛盾,从而要证明的结论成立.···································12分22.【解析】(1)当时,,,设切点,则在点A处的切线为,···························································2分化简得,因为是的一条切线,,,解得,;·································································3分(2)当时,令,则.····························································4分若,则当时,恒成立,在上单调递增,,即符合题意;·······························································5分若时,由,得,当时,,在上单调递减,,与已知在上恒成立矛盾,舍去.··················································6分综上,且.····································································7分(3),.若,则在区间上恒成立,在区间上单调递增,因为在区间上有零点,所以,解得.·······································································8分所以,当时,等号成立,此时.·························································9分若时,当时,,在上单调递减,当时,,在上单调递增.因为在区间上有零点,所以,所以,所以,································································10分令,,则,所以在(2)上单调递减.所以.若,则在区间上恒成立,在区间上单调递减.因为叫在区间上有零点,所以,解得.··········································································11分所以,当时,等号成立,此时;·······················································12分综上,的最小值是.当时,由,得,或,由,得,····································································2分故函数的单调递增区间为和,单调递减区间为,·······································4分当时,恒成立,故函数的单调递增区间为.············································5分(2)恒成立等价于恒成立,令,当时,即当时,,故在内不能恒成立,··············································6分当时,即当时,则,故在内不能恒成立,············································7分当时,即当时,,由解得,······················································8分当时,;当时,.······························································10分所以,解得.·································································11分综上,当时,在内恒成立,即恒成立,所以实数a的取值范围是.························································12分
相关试卷
这是一份2022-2023学年上海外国语大学附属外国语学校高二下学期期中数学试题含答案,共12页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年江苏省南京外国语学校高二下学期期中数学试题(A卷)含解析,共20页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。
这是一份江苏省南京外国语学校2021-2022学年高一下学期期中数学试题,共4页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。