|试卷下载
搜索
    上传资料 赚现金
    福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)
    立即下载
    加入资料篮
    福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)01
    福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)02
    福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)

    展开
    这是一份福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题),共27页。试卷主要包含了解答题提升题,解答题压轴题等内容,欢迎下载使用。

    03解答题提升题&压轴题(15题)

    四、解答题提升题
    34.(2020•福建)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
    (1)求二次函数的表达式;
    (2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;
    (3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.
    35.(2019•福建)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.
    (1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;
    (2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
    ①求点A的坐标和抛物线的解析式;
    ②证明:对于每个给定的实数k,都有A、D、C三点共线.
    36.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
    (1)求∠BDF的大小;
    (2)求CG的长.

    37.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
    (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
    (2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,连接OH,BD,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.

    38.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).
    (1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;
    (2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.
    ①求抛物线的解析式;
    ②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.
    39.(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
    (1)求证:BG∥CD;
    (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

    40.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
    (Ⅰ)若AB=4,求的长;
    (Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.

    41.(2017•福建)小明在某次作业中得到如下结果:
    sin27°+sin283°≈0.122+0.992=0.9945,
    sin222°+sin268°≈0.372+0.932=1.0018,
    sin229°+sin261°≈0.482+0.872=0.9873,
    sin237°+sin253°≈0.602+0.802=1.0000,
    sin245°+sin245°=()2+()2=1.
    据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
    (Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
    (Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
    42.(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
    使用次数
    0
    1
    2
    3
    4
    5(含5次以上)
    累计车费
    0
    0.5
    0.9
    a
    b
    1.5
    同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
    使用次数
    0
    1
    2
    3
    4
    5
    人数
    5
    15
    10
    30
    25
    15
    (Ⅰ)写出a,b的值;
    (Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
    43.(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
    (Ⅰ)若△PCD是等腰三角形时,求AP的长;
    (Ⅱ)若AP=,求CF的长.

    44.(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
    (Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
    (Ⅱ)说明直线与抛物线有两个交点;
    (Ⅲ)直线与抛物线的另一个交点记为N.
    (ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;
    (ⅱ)求△QMN面积的最小值.
    五、解答题压轴题
    45.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
    (1)若抛物线过点P(0,1),求a+b的最小值;
    (2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
    ①求抛物线的解析式;
    ②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
    46.(2018•福建)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
    (1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
    (2)求矩形菜园ABCD面积的最大值.

    47.(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
    (1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.
    如图1,求所利用旧墙AD的长;
    (2)已知0<a<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩
    形菜园ABCD的面积最大,并求面积的最大值.

    48.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.
    (1)求抛物线的解析式;
    (2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:
    ①求证:BC平分∠MBN;
    ②求△MBC外心的纵坐标的取值范围.




    【参考答案】
    四、解答题提升题
    34.(2020•福建)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
    (1)求二次函数的表达式;
    (2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;
    (3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.
    【解析】解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,
    ∴点A(0,10),点B(5,0),
    ∵BC=4,
    ∴点C(9,0)或点C(1,0),
    ∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
    ∴当x≥5时,y随x的增大而增大,
    当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,
    当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,
    ∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),
    ∴10=5a,
    ∴a=2,
    ∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;
    方法二:设抛物线解析式为y=ax2+bx+c,
    由题意可得:,
    解得:,
    ∴抛物线解析式为:y=2x2﹣12x+10;

    (2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),
    ∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,
    假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP),

    解得:n=10,
    ∵n=10与已知n≠10矛盾,
    ∴l1与l2不相交,
    ∴l2∥l1;
    (3)如图,

    ∵直线l3:y=﹣2x+q过点C,
    ∴0=﹣2×1+q,
    ∴q=2,
    ∴直线l3解析式为:y=﹣2x+2,
    ∴l3∥l1,
    ∴CF∥AB,
    ∴∠ECF=∠ABE,∠CFE=∠BAE,
    ∴△CEF∽△BEA,
    ∴=()2,
    设BE=t(0<t<4),则CE=4﹣t,
    ∴S△ABE=×t×10=5t,
    ∴S△CEF=()2×S△ABE=()2×5t=,
    ∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,
    ∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.
    35.(2019•福建)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.
    (1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;
    (2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
    ①求点A的坐标和抛物线的解析式;
    ②证明:对于每个给定的实数k,都有A、D、C三点共线.
    【解析】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,
    则c=4a;
    (2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),
    且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1),
    又△ABC为等腰直角三角形,
    ∴点A为抛物线的顶点;
    ①c=1,顶点A(1,0),
    抛物线的解析式:y=x2﹣2x+1,
    ②,

    x2﹣(2+k)x+k=0,
    x=(2+k±),
    xD=xB=(2+k﹣),yD=﹣1;
    则D,
    yC=(2+k2+k),
    C,A(1,0),
    ∴直线AD表达式中的k值为:kAD==,直线AC表达式中的k值为:kAC=,
    ∴kAD=kAC,点A、C、D三点共线.

    36.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
    (1)求∠BDF的大小;
    (2)求CG的长.

    【解析】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
    ∴∠DAB=90°,AD=AB=10,
    ∴∠ABD=45°,
    ∵△EFG是△ABC沿CB方向平移得到,
    ∴AB∥EF,
    ∴∠BDF=∠ABD=45°;

    (2)方法1、由平移的性质得,AE∥CG,AB∥EF,
    ∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,
    ∵∠DAB=90°,
    ∴∠ADE=90°,
    ∵∠ACB=90°,
    ∴∠ADE=∠ACB,
    ∴△ADE∽△ACB,
    ∴,
    ∵AC=8,AB=AD=10,
    ∴AE=12.5,
    由平移的性质得,CG=AE=12.5;

    方法2、由平移的性质得,AE∥CG,AB∥EF,
    ∴四边形ABFE是平行四边形,
    ∴S▱ABFE=AE•AC=AB•AD,
    由旋转知,AD=AB=10,
    ∵AC=8,
    ∴AE×8=10×10,
    ∴AE=12.5,
    由平移的性质得,CG=AE=12.5.
    37.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
    (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
    (2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,连接OH,BD,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.

    【解析】解:(1)如图1,∵AC是⊙O的直径,
    ∴∠ABC=90°,
    ∵DE⊥AB,
    ∴∠DEA=90°,
    ∴∠DEA=∠ABC,
    ∴BC∥DF,
    ∴∠F=∠PBC,
    ∵四边形BCDF是圆内接四边形,
    ∴∠F+∠DCB=180°,
    ∵∠PCB+∠DCB=180°,
    ∴∠F=∠PCB,
    ∴∠PBC=∠PCB,
    ∴PC=PB;

    (2)如图2,连接OD,∵AC是⊙O的直径,
    ∴∠ADC=90°,
    ∵BG⊥AD,
    ∴∠AGB=90°,
    ∴∠ADC=∠AGB,
    ∴BG∥DC,
    ∵BC∥DE,
    ∴四边形DHBC是平行四边形,
    ∴BC=DH=1,
    在Rt△ABC中,AB=,tan∠ACB=,
    ∴∠ACB=60°,
    ∴BC=AC=OD,
    ∴DH=OD,
    在等腰三角形DOH中,∠DOH=∠OHD=80°,
    ∴∠ODH=20°,
    设DE交AC于N,
    ∵BC∥DE,
    ∴∠ONH=∠ACB=60°,
    ∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
    ∴∠DOC=∠DOH﹣∠NOH=40°,
    ∵OA=OD,∴∠OAD=∠DOC=20°,
    ∴∠CBD=∠OAD=20°,
    ∵BC∥DE,
    ∴∠BDE=∠CBD=20°.

    38.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).
    (1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;
    (2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.
    ①求抛物线的解析式;
    ②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.
    【解析】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),
    ∴c=2.
    又∵点(﹣,0)也在该抛物线上,
    ∴a(﹣)2+b(﹣)+c=0,
    ∴2a﹣b+2=0(a≠0).
    (2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,
    ∴x1﹣x2<0,y1﹣y2<0,
    ∴当x<0时,y随x的增大而增大;
    同理:当x>0时,y随x的增大而减小,
    ∴抛物线的对称轴为y轴,开口向下,
    ∴b=0.
    ∵OA为半径的圆与抛物线的另两个交点为B、C,
    ∴△ABC为等腰三角形,
    又∵△ABC有一个内角为60°,
    ∴△ABC为等边三角形.
    设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,
    又∵OB=OC=OA=2,
    ∴CD=OC•cos30°=,OD=OC•sin30°=1.
    不妨设点C在y轴右侧,则点C的坐标为(,﹣1).
    ∵点C在抛物线上,且c=2,b=0,
    ∴3a+2=﹣1,
    ∴a=﹣1,
    ∴抛物线的解析式为y=﹣x2+2.
    ②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).
    直线OM的解析式为y=k1x(k1≠0).
    ∵O、M、N三点共线,
    ∴x1≠0,x2≠0,且=,
    ∴﹣x1+=﹣x2+,
    ∴x1﹣x2=﹣,
    ∴x1x2=﹣2,即x2=﹣,
    ∴点N的坐标为(﹣,﹣+2).
    设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).
    ∵点P是点O关于点A的对称点,
    ∴OP=2OA=4,
    ∴点P的坐标为(0,4).
    设直线PM的解析式为y=k2x+4,
    ∵点M的坐标为(x1,﹣+2),
    ∴﹣+2=k2x1+4,
    ∴k2=﹣,
    ∴直线PM的解析式为y=﹣x+4.
    ∵﹣•+4==﹣+2,
    ∴点N′在直线PM上,
    ∴PA平分∠MPN.


    39.(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
    (1)求证:BG∥CD;
    (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

    【解析】(1)证明:如图1,∵PC=PB,
    ∴∠PCB=∠PBC,
    ∵四边形ABCD内接于圆,
    ∴∠BAD+∠BCD=180°,
    ∵∠BCD+∠PCB=180°,
    ∴∠BAD=∠PCB,
    ∵∠BAD=∠BFD,
    ∴∠BFD=∠PCB=∠PBC,
    ∴BC∥DF,
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴∠ABC=90°,
    ∴AC是⊙O的直径,
    ∴∠ADC=90°,
    ∵BG⊥AD,
    ∴∠AGB=90°,
    ∴∠ADC=∠AGB,
    ∴BG∥CD;
    (2)由(1)得:BC∥DF,BG∥CD,
    ∴四边形BCDH是平行四边形,
    ∴BC=DH,
    在Rt△ABC中,∵AB=DH,
    ∴tan∠ACB==,
    ∴∠ACB=60°,∠BAC=30°,
    ∴∠ADB=60°,BC=AC,
    ∴DH=AC,
    ①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
    ∴∠AMD+∠ADM=90°
    ∵DE⊥AB,
    ∴∠BED=90°,
    ∴∠BDE+∠ABD=90°,
    ∵∠AMD=∠ABD,
    ∴∠ADM=∠BDE,
    ∵DH=AC,
    ∴DH=OD,
    ∴∠DOH=∠OHD=80°,
    ∴∠ODH=20°
    ∵∠ADB=60°,
    ∴∠ADM+∠BDE=40°,
    ∴∠BDE=∠ADM=20°,
    ②当点O在DE的右侧时,如图3,作直径DN,连接BN,
    由①得:∠ADE=∠BDN=20°,∠ODH=20°,
    ∴∠BDE=∠BDN+∠ODH=40°,
    综上所述,∠BDE的度数为20°或40°.



    40.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
    (Ⅰ)若AB=4,求的长;
    (Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.

    【解析】解:(Ⅰ)连接OC,OD,
    ∵∠COD=2∠CAD,∠CAD=45°,
    ∴∠COD=90°,
    ∵AB=4,
    ∴OC=AB=2,
    ∴的长=×π×2=π;
    (Ⅱ)∵=,
    ∴∠BOC=∠AOD,
    ∵∠COD=90°,
    ∴∠AOD=45°,
    ∵OA=OD,
    ∴∠ODA=∠OAD,
    ∵∠AOD+∠ODA+∠OAD=180°,
    ∴∠ODA=67.5°,
    ∵AD=AP,
    ∴∠ADP=∠APD,
    ∵∠CAD=∠ADP+∠APD,∠CAD=45°,
    ∴∠ADP=CAD=22.5°,
    ∴∠ODP=∠ODA+∠ADP=90°,
    ∴PD是⊙O的切线.

    41.(2017•福建)小明在某次作业中得到如下结果:
    sin27°+sin283°≈0.122+0.992=0.9945,
    sin222°+sin268°≈0.372+0.932=1.0018,
    sin229°+sin261°≈0.482+0.872=0.9873,
    sin237°+sin253°≈0.602+0.802=1.0000,
    sin245°+sin245°=()2+()2=1.
    据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
    (Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
    (Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
    【解析】解:(1)当α=30°时,
    sin2α+sin2(90°﹣α)
    =sin230°+sin260°
    =()2+()2
    =+
    =1;

    (2)小明的猜想成立,证明如下:
    如图,在△ABC中,∠C=90°,

    设∠A=α,则∠B=90°﹣α,
    ∴sin2α+sin2(90°﹣α)
    =()2+()2


    =1.
    42.(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
    使用次数
    0
    1
    2
    3
    4
    5(含5次以上)
    累计车费
    0
    0.5
    0.9
    a
    b
    1.5
    同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
    使用次数
    0
    1
    2
    3
    4
    5
    人数
    5
    15
    10
    30
    25
    15
    (Ⅰ)写出a,b的值;
    (Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
    【解析】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;
    (Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:
    ×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),
    所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),
    因为5500<5800,
    故收费调整后,此运营商在该校投放A品牌共享单车不能获利.
    43.(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
    (Ⅰ)若△PCD是等腰三角形时,求AP的长;
    (Ⅱ)若AP=,求CF的长.

    【解析】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,
    ∴DC=AB=6,
    ∴AC==10,
    要使△PCD是等腰三角形,
    ①当CP=CD时,AP=AC﹣CP=10﹣6=4,
    ②当PD=PC时,∠PDC=∠PCD,
    ∵∠PCD+∠PAD=∠PDC+∠PDA=90°,
    ∴∠PAD=∠PDA,
    ∴PD=PA,
    ∴PA=PC,
    ∴AP=AC=5,
    ③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,
    ∵S△ADC=AD•DC=AC•DQ,
    ∴DQ==,
    ∴CQ==,
    ∴PC=2CQ=,
    ∴AP=AC﹣PC=10﹣=;
    所以,若△PCD是等腰三角形时,AP=4或5或;

    (Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,
    ∵四边形ABCD和PEFD是矩形,
    ∴∠ADC=∠PDF=90°,
    ∴∠ADP+∠PDC=∠PDC+∠CDF,
    ∴∠ADP=∠CDF,
    ∵∠BCD=90°,OE=OD,
    ∴OC=ED,
    在矩形PEFD中,PF=DE,
    ∴OC=PF,
    ∵OP=OF=PF,
    ∴OC=OP=OF,
    ∴∠OCF=∠OFC,∠OCP=∠OPC,
    ∵∠OPC+∠OFC+∠PCF=180°,
    ∴2∠OCP+2∠OCF=180°,
    ∴∠PCF=90°,
    ∴∠PCD+∠FCD=90°,
    在Rt△ADC中,∠PCD+∠PAD=90°,
    ∴∠PAD=∠FCD,
    ∴△ADP∽△CDF,
    ∴,
    ∵AP=,
    ∴CF=.

    方法2、如图,

    ∵四边形ABCD和DPEF是矩形,
    ∴∠ADC=∠PDF=90°,
    ∴∠ADP=∠CDF,
    ∵∠DGF+∠CDF=90°,
    ∴∠EGC+∠CDF=90°,
    ∵∠CEF+∠CGE=90°,
    ∴∠CDF=∠FEC,
    ∴点E,C,F,D四点共圆,
    ∵四边形DPEF是矩形,
    ∴点P也在此圆上,
    ∵PE=DF,∴,
    ∴∠ACB=∠DCF,
    ∵AD∥BC,
    ∴∠ACB=∠DAP,
    ∴∠DAP=∠DCF,
    ∵∠ADP=∠CDF,
    ∴△ADP∽△CDF,
    ∴,
    ∵AP=,
    ∴CF=.

    方法3、如图3,
    过点P作PM⊥BC于M交AD于N,
    ∴∠PND=90°,
    ∵PN∥CD,
    ∴,
    ∴,
    ∴AN=,
    ∴ND=8﹣=(10﹣)
    同理:PM=(10﹣)
    ∵∠PND=90°,
    ∴∠DPN+∠PDN=90°,
    ∵四边形PEFD是矩形,
    ∴∠DPE=90°,
    ∴∠DPN+∠EPM=90°,
    ∴∠PDN=∠EPM,
    ∵∠PND=∠EMP=90°,
    ∴△PND∽△EMP,
    ∴=,
    ∵PD=EF,DF=PE.
    ∴,
    ∵,
    ∴,∵∠ADP=∠CDF,
    ∴△ADP∽△CDF,
    ∴=,
    ∵AP=,
    ∴CF=.


    44.(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
    (Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
    (Ⅱ)说明直线与抛物线有两个交点;
    (Ⅲ)直线与抛物线的另一个交点记为N.
    (ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;
    (ⅱ)求△QMN面积的最小值.
    【解析】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),
    ∴a+a+b=0,即b=﹣2a,
    ∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,
    ∴抛物线顶点Q的坐标为(﹣,﹣);
    (Ⅱ)∵直线y=2x+m经过点M(1,0),
    ∴0=2×1+m,解得m=﹣2,
    联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*),
    ∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,
    由(Ⅰ)知b=﹣2a,且a<b,
    ∴a<0,b>0,
    ∴Δ>0,
    ∴方程(*)有两个不相等的实数根,
    ∴直线与抛物线有两个交点;
    (Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,
    ∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,
    ∴N点坐标为(﹣2,﹣6);
    (i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,
    ∵﹣1≤a≤﹣,
    ∴﹣2≤≤﹣1,
    ∴MN2随的增大而减小,
    ∴当=﹣2时,MN2有最大值245,则MN有最大值7,
    当=﹣1时,MN2有最小值125,则MN有最小值5,
    ∴线段MN长度的取值范围为5≤MN≤7;
    (ii)如图,设抛物线对称轴交直线于点E,
    ∵抛物线对称轴为x=﹣,点E在直线MN:y=2x﹣2上,
    ∴E(﹣,﹣3),
    ∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,
    ∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,
    ∴27a2+(8S﹣54)a+24=0(*),
    ∵关于a的方程(*)有实数根,
    ∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,
    ∵a<0,
    ∴S=﹣﹣>,
    ∴8S﹣54>0,
    ∴8S﹣54≥36,即S≥+,
    当S=+时,由方程(*)可得a=﹣满足题意,
    ∴当a=﹣,b=时,△QMN面积的最小值为+.

    五、解答题压轴题
    45.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
    (1)若抛物线过点P(0,1),求a+b的最小值;
    (2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
    ①求抛物线的解析式;
    ②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
    【解析】解:(1)把P(0,1)代入解析式得:c=1,
    ∴y=ax2+bx+1,
    又∵抛物线与x轴只有一个公共点,
    ∴△=b2﹣4a=0,即,
    ∴,
    当b=﹣2时,a+b有最小值为﹣1;
    (2)①∵抛物线与x轴只有一个公共点,
    ∴抛物线上的顶点在x轴上,
    ∴抛物线上的点为P1,P3,
    又∵P1,P3关于y轴对称,
    ∴顶点为原点(0,0),
    设解析式为y=ax2,
    代入点P1得:,
    ②证明:
    联立直线l和抛物线得:

    即:x2﹣4kx﹣4=0,
    设M(x1,kx1+1),N(x2,kx2+1),
    由韦达定理得:x1+x2=4k,x1x2=﹣4,
    设线段MN的中点为T,设A的坐标为(m,﹣1),
    则T的坐标为(2k,2k2+1),
    ∴AT2=(2k﹣m)2+(2k2+2)2,
    由题意得:,
    ∵△MAN是直角三角形,且MN是斜边,
    ∴,即:,
    ∴×16(k4+2k2+1)=(2k﹣m)2+(2k2+2)2,
    解得m=2k,
    ∴A(2k,﹣1),
    ∴B(2k,k2),
    ∴C(2k,2k2+1),
    ∵,
    ∴B是AC的中点,
    ∴AB=BC,
    又∵△MAB与△MBC的高都是点M到直线AC的距离,
    ∴△MAB与△MBC的高相等,
    ∴△MAB与△MBC的面积相等.
    46.(2018•福建)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
    (1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
    (2)求矩形菜园ABCD面积的最大值.

    【解析】解:(1)设AB=tm,则BC=(100﹣2t)m,
    根据题意得t(100﹣2t)=450,解得t1=5,t2=45,
    当t=5时,100﹣2t=90>20,不合题意舍去;
    当t=45时,100﹣2t=10,
    答:AD的长为10m;
    (2)设AD=xm,矩形菜园ABCD面积为S,
    S=x(100﹣x)=﹣(x﹣50)2+1250,
    当a≥50时,则x=50时,S的最大值为1250;
    当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,
    综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1250m2;当0<a<50时,矩形菜园ABCD面积的最大值为(50a﹣a2)m2.
    47.(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
    (1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.
    如图1,求所利用旧墙AD的长;
    (2)已知0<a<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩
    形菜园ABCD的面积最大,并求面积的最大值.

    【解析】解:(1)设AD=x米,则AB=
    依题意得,
    解得x1=10,x2=90
    ∵a=20,且x≤a
    ∴x=90舍去
    ∴利用旧墙AD的长为10米.
    (2)设AD=x米,矩形ABCD的面积为S平方米
    ①如果按图一方案围成矩形菜园,依题意
    得:
    S=,0<x<a
    ∵0<a<50
    ∴x<a<50时,S随x的增大而增大
    当x=a时,S最大=50a﹣

    ②如按图2方案围成矩形菜园,依题意得
    S=,a≤x<50+
    当a<25+<50+时,即0<a<时,
    则x=25+时,S最大=(25+)2=
    当25+≤a,即时,S随x的增大而减小
    ∴x=a时,S最大=
    综合①②,当0<a<时,
    ﹣()=
    >,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米
    当时,两种方案围成的矩形菜园面积最大值相等.
    ∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;
    当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.
    48.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.
    (1)求抛物线的解析式;
    (2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:
    ①求证:BC平分∠MBN;
    ②求△MBC外心的纵坐标的取值范围.
    【解析】解:(1)∵抛物线过点A(0,2),
    ∴c=2,
    当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,
    ∴当x<0时,y随x的增大而增大,
    同理当x>0时,y随x的增大而减小,
    ∴抛物线的对称轴为y轴,且开口向下,即b=0,
    ∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,
    ∴△ABC为等腰三角形,
    ∵△ABC中有一个角为60°,
    ∴△ABC为等边三角形,且OC=OA=2,
    设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,
    ∴BD=OB•cos30°=,OD=OB•sin30°=1,
    ∵B在C的左侧,
    ∴B的坐标为(﹣,﹣1),
    ∵B点在抛物线上,且c=2,b=0,
    ∴3a+2=﹣1,
    解得:a=﹣1,
    则抛物线解析式为y=﹣x2+2;
    (2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),
    ∵MN与直线y=﹣2x平行,
    ∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,
    ∴直线MN解析式为y=﹣2x﹣x12+2x1+2,
    把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,
    ∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,
    作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,
    ∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,
    ∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,
    在Rt△BEM中,tan∠MBE===﹣x1,
    在Rt△BFN中,tan∠NBF=====﹣x1,
    ∵tan∠MBE=tan∠NBF,
    ∴∠MBE=∠NBF,
    则BC平分∠MBN;
    ②∵y轴为BC的垂直平分线,
    ∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,
    根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,
    ∵x12=2﹣y1,
    ∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,
    由①得:﹣1<y1≤2,
    ∴﹣<y0≤0,
    则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.



    相关试卷

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题,共55页。

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题③: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题③,共25页。

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题②: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题②,共24页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map