福建省五年(2017-2021)中考数学真题解答题按难易度分层汇编:03解答题提升题&压轴题(15题)
展开03解答题提升题&压轴题(15题)
四、解答题提升题
34.(2020•福建)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
(1)求二次函数的表达式;
(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;
(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.
35.(2019•福建)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.
(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;
(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
①求点A的坐标和抛物线的解析式;
②证明:对于每个给定的实数k,都有A、D、C三点共线.
36.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
(1)求∠BDF的大小;
(2)求CG的长.
37.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,连接OH,BD,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.
38.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).
(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;
(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.
①求抛物线的解析式;
②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.
39.(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.
40.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求的长;
(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.
41.(2017•福建)小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=()2+()2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
42.(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(Ⅰ)写出a,b的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
43.(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
(Ⅰ)若△PCD是等腰三角形时,求AP的长;
(Ⅱ)若AP=,求CF的长.
44.(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.
五、解答题压轴题
45.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
(1)若抛物线过点P(0,1),求a+b的最小值;
(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
46.(2018•福建)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
47.(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.
如图1,求所利用旧墙AD的长;
(2)已知0<a<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩
形菜园ABCD的面积最大,并求面积的最大值.
48.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.
(1)求抛物线的解析式;
(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:
①求证:BC平分∠MBN;
②求△MBC外心的纵坐标的取值范围.
【参考答案】
四、解答题提升题
34.(2020•福建)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
(1)求二次函数的表达式;
(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;
(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.
【解析】解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,
∴点A(0,10),点B(5,0),
∵BC=4,
∴点C(9,0)或点C(1,0),
∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
∴当x≥5时,y随x的增大而增大,
当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,
当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,
∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),
∴10=5a,
∴a=2,
∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;
方法二:设抛物线解析式为y=ax2+bx+c,
由题意可得:,
解得:,
∴抛物线解析式为:y=2x2﹣12x+10;
(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),
∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,
假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP),
∴
解得:n=10,
∵n=10与已知n≠10矛盾,
∴l1与l2不相交,
∴l2∥l1;
(3)如图,
、
∵直线l3:y=﹣2x+q过点C,
∴0=﹣2×1+q,
∴q=2,
∴直线l3解析式为:y=﹣2x+2,
∴l3∥l1,
∴CF∥AB,
∴∠ECF=∠ABE,∠CFE=∠BAE,
∴△CEF∽△BEA,
∴=()2,
设BE=t(0<t<4),则CE=4﹣t,
∴S△ABE=×t×10=5t,
∴S△CEF=()2×S△ABE=()2×5t=,
∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,
∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.
35.(2019•福建)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.
(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;
(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
①求点A的坐标和抛物线的解析式;
②证明:对于每个给定的实数k,都有A、D、C三点共线.
【解析】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,
则c=4a;
(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),
且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1),
又△ABC为等腰直角三角形,
∴点A为抛物线的顶点;
①c=1,顶点A(1,0),
抛物线的解析式:y=x2﹣2x+1,
②,
x2﹣(2+k)x+k=0,
x=(2+k±),
xD=xB=(2+k﹣),yD=﹣1;
则D,
yC=(2+k2+k),
C,A(1,0),
∴直线AD表达式中的k值为:kAD==,直线AC表达式中的k值为:kAC=,
∴kAD=kAC,点A、C、D三点共线.
36.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
(1)求∠BDF的大小;
(2)求CG的长.
【解析】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
∴∠DAB=90°,AD=AB=10,
∴∠ABD=45°,
∵△EFG是△ABC沿CB方向平移得到,
∴AB∥EF,
∴∠BDF=∠ABD=45°;
(2)方法1、由平移的性质得,AE∥CG,AB∥EF,
∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,
∵∠DAB=90°,
∴∠ADE=90°,
∵∠ACB=90°,
∴∠ADE=∠ACB,
∴△ADE∽△ACB,
∴,
∵AC=8,AB=AD=10,
∴AE=12.5,
由平移的性质得,CG=AE=12.5;
方法2、由平移的性质得,AE∥CG,AB∥EF,
∴四边形ABFE是平行四边形,
∴S▱ABFE=AE•AC=AB•AD,
由旋转知,AD=AB=10,
∵AC=8,
∴AE×8=10×10,
∴AE=12.5,
由平移的性质得,CG=AE=12.5.
37.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,连接OH,BD,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.
【解析】解:(1)如图1,∵AC是⊙O的直径,
∴∠ABC=90°,
∵DE⊥AB,
∴∠DEA=90°,
∴∠DEA=∠ABC,
∴BC∥DF,
∴∠F=∠PBC,
∵四边形BCDF是圆内接四边形,
∴∠F+∠DCB=180°,
∵∠PCB+∠DCB=180°,
∴∠F=∠PCB,
∴∠PBC=∠PCB,
∴PC=PB;
(2)如图2,连接OD,∵AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥DC,
∵BC∥DE,
∴四边形DHBC是平行四边形,
∴BC=DH=1,
在Rt△ABC中,AB=,tan∠ACB=,
∴∠ACB=60°,
∴BC=AC=OD,
∴DH=OD,
在等腰三角形DOH中,∠DOH=∠OHD=80°,
∴∠ODH=20°,
设DE交AC于N,
∵BC∥DE,
∴∠ONH=∠ACB=60°,
∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
∴∠DOC=∠DOH﹣∠NOH=40°,
∵OA=OD,∴∠OAD=∠DOC=20°,
∴∠CBD=∠OAD=20°,
∵BC∥DE,
∴∠BDE=∠CBD=20°.
38.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).
(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;
(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.
①求抛物线的解析式;
②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.
【解析】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),
∴c=2.
又∵点(﹣,0)也在该抛物线上,
∴a(﹣)2+b(﹣)+c=0,
∴2a﹣b+2=0(a≠0).
(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,
∴x1﹣x2<0,y1﹣y2<0,
∴当x<0时,y随x的增大而增大;
同理:当x>0时,y随x的增大而减小,
∴抛物线的对称轴为y轴,开口向下,
∴b=0.
∵OA为半径的圆与抛物线的另两个交点为B、C,
∴△ABC为等腰三角形,
又∵△ABC有一个内角为60°,
∴△ABC为等边三角形.
设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,
又∵OB=OC=OA=2,
∴CD=OC•cos30°=,OD=OC•sin30°=1.
不妨设点C在y轴右侧,则点C的坐标为(,﹣1).
∵点C在抛物线上,且c=2,b=0,
∴3a+2=﹣1,
∴a=﹣1,
∴抛物线的解析式为y=﹣x2+2.
②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).
直线OM的解析式为y=k1x(k1≠0).
∵O、M、N三点共线,
∴x1≠0,x2≠0,且=,
∴﹣x1+=﹣x2+,
∴x1﹣x2=﹣,
∴x1x2=﹣2,即x2=﹣,
∴点N的坐标为(﹣,﹣+2).
设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).
∵点P是点O关于点A的对称点,
∴OP=2OA=4,
∴点P的坐标为(0,4).
设直线PM的解析式为y=k2x+4,
∵点M的坐标为(x1,﹣+2),
∴﹣+2=k2x1+4,
∴k2=﹣,
∴直线PM的解析式为y=﹣x+4.
∵﹣•+4==﹣+2,
∴点N′在直线PM上,
∴PA平分∠MPN.
39.(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.
【解析】(1)证明:如图1,∵PC=PB,
∴∠PCB=∠PBC,
∵四边形ABCD内接于圆,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四边形BCDH是平行四边形,
∴BC=DH,
在Rt△ABC中,∵AB=DH,
∴tan∠ACB==,
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,BC=AC,
∴DH=AC,
①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵DH=AC,
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠ADB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②当点O在DE的右侧时,如图3,作直径DN,连接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
综上所述,∠BDE的度数为20°或40°.
40.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求的长;
(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.
【解析】解:(Ⅰ)连接OC,OD,
∵∠COD=2∠CAD,∠CAD=45°,
∴∠COD=90°,
∵AB=4,
∴OC=AB=2,
∴的长=×π×2=π;
(Ⅱ)∵=,
∴∠BOC=∠AOD,
∵∠COD=90°,
∴∠AOD=45°,
∵OA=OD,
∴∠ODA=∠OAD,
∵∠AOD+∠ODA+∠OAD=180°,
∴∠ODA=67.5°,
∵AD=AP,
∴∠ADP=∠APD,
∵∠CAD=∠ADP+∠APD,∠CAD=45°,
∴∠ADP=CAD=22.5°,
∴∠ODP=∠ODA+∠ADP=90°,
∴PD是⊙O的切线.
41.(2017•福建)小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=()2+()2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
【解析】解:(1)当α=30°时,
sin2α+sin2(90°﹣α)
=sin230°+sin260°
=()2+()2
=+
=1;
(2)小明的猜想成立,证明如下:
如图,在△ABC中,∠C=90°,
设∠A=α,则∠B=90°﹣α,
∴sin2α+sin2(90°﹣α)
=()2+()2
=
=
=1.
42.(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(Ⅰ)写出a,b的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
【解析】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;
(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:
×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),
所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),
因为5500<5800,
故收费调整后,此运营商在该校投放A品牌共享单车不能获利.
43.(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
(Ⅰ)若△PCD是等腰三角形时,求AP的长;
(Ⅱ)若AP=,求CF的长.
【解析】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,
∴DC=AB=6,
∴AC==10,
要使△PCD是等腰三角形,
①当CP=CD时,AP=AC﹣CP=10﹣6=4,
②当PD=PC时,∠PDC=∠PCD,
∵∠PCD+∠PAD=∠PDC+∠PDA=90°,
∴∠PAD=∠PDA,
∴PD=PA,
∴PA=PC,
∴AP=AC=5,
③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,
∵S△ADC=AD•DC=AC•DQ,
∴DQ==,
∴CQ==,
∴PC=2CQ=,
∴AP=AC﹣PC=10﹣=;
所以,若△PCD是等腰三角形时,AP=4或5或;
(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,
∵四边形ABCD和PEFD是矩形,
∴∠ADC=∠PDF=90°,
∴∠ADP+∠PDC=∠PDC+∠CDF,
∴∠ADP=∠CDF,
∵∠BCD=90°,OE=OD,
∴OC=ED,
在矩形PEFD中,PF=DE,
∴OC=PF,
∵OP=OF=PF,
∴OC=OP=OF,
∴∠OCF=∠OFC,∠OCP=∠OPC,
∵∠OPC+∠OFC+∠PCF=180°,
∴2∠OCP+2∠OCF=180°,
∴∠PCF=90°,
∴∠PCD+∠FCD=90°,
在Rt△ADC中,∠PCD+∠PAD=90°,
∴∠PAD=∠FCD,
∴△ADP∽△CDF,
∴,
∵AP=,
∴CF=.
方法2、如图,
∵四边形ABCD和DPEF是矩形,
∴∠ADC=∠PDF=90°,
∴∠ADP=∠CDF,
∵∠DGF+∠CDF=90°,
∴∠EGC+∠CDF=90°,
∵∠CEF+∠CGE=90°,
∴∠CDF=∠FEC,
∴点E,C,F,D四点共圆,
∵四边形DPEF是矩形,
∴点P也在此圆上,
∵PE=DF,∴,
∴∠ACB=∠DCF,
∵AD∥BC,
∴∠ACB=∠DAP,
∴∠DAP=∠DCF,
∵∠ADP=∠CDF,
∴△ADP∽△CDF,
∴,
∵AP=,
∴CF=.
方法3、如图3,
过点P作PM⊥BC于M交AD于N,
∴∠PND=90°,
∵PN∥CD,
∴,
∴,
∴AN=,
∴ND=8﹣=(10﹣)
同理:PM=(10﹣)
∵∠PND=90°,
∴∠DPN+∠PDN=90°,
∵四边形PEFD是矩形,
∴∠DPE=90°,
∴∠DPN+∠EPM=90°,
∴∠PDN=∠EPM,
∵∠PND=∠EMP=90°,
∴△PND∽△EMP,
∴=,
∵PD=EF,DF=PE.
∴,
∵,
∴,∵∠ADP=∠CDF,
∴△ADP∽△CDF,
∴=,
∵AP=,
∴CF=.
44.(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.
【解析】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),
∴a+a+b=0,即b=﹣2a,
∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,
∴抛物线顶点Q的坐标为(﹣,﹣);
(Ⅱ)∵直线y=2x+m经过点M(1,0),
∴0=2×1+m,解得m=﹣2,
联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*),
∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,
由(Ⅰ)知b=﹣2a,且a<b,
∴a<0,b>0,
∴Δ>0,
∴方程(*)有两个不相等的实数根,
∴直线与抛物线有两个交点;
(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,
∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,
∴N点坐标为(﹣2,﹣6);
(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,
∵﹣1≤a≤﹣,
∴﹣2≤≤﹣1,
∴MN2随的增大而减小,
∴当=﹣2时,MN2有最大值245,则MN有最大值7,
当=﹣1时,MN2有最小值125,则MN有最小值5,
∴线段MN长度的取值范围为5≤MN≤7;
(ii)如图,设抛物线对称轴交直线于点E,
∵抛物线对称轴为x=﹣,点E在直线MN:y=2x﹣2上,
∴E(﹣,﹣3),
∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,
∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,
∴27a2+(8S﹣54)a+24=0(*),
∵关于a的方程(*)有实数根,
∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,
∵a<0,
∴S=﹣﹣>,
∴8S﹣54>0,
∴8S﹣54≥36,即S≥+,
当S=+时,由方程(*)可得a=﹣满足题意,
∴当a=﹣,b=时,△QMN面积的最小值为+.
五、解答题压轴题
45.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
(1)若抛物线过点P(0,1),求a+b的最小值;
(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
【解析】解:(1)把P(0,1)代入解析式得:c=1,
∴y=ax2+bx+1,
又∵抛物线与x轴只有一个公共点,
∴△=b2﹣4a=0,即,
∴,
当b=﹣2时,a+b有最小值为﹣1;
(2)①∵抛物线与x轴只有一个公共点,
∴抛物线上的顶点在x轴上,
∴抛物线上的点为P1,P3,
又∵P1,P3关于y轴对称,
∴顶点为原点(0,0),
设解析式为y=ax2,
代入点P1得:,
②证明:
联立直线l和抛物线得:
,
即:x2﹣4kx﹣4=0,
设M(x1,kx1+1),N(x2,kx2+1),
由韦达定理得:x1+x2=4k,x1x2=﹣4,
设线段MN的中点为T,设A的坐标为(m,﹣1),
则T的坐标为(2k,2k2+1),
∴AT2=(2k﹣m)2+(2k2+2)2,
由题意得:,
∵△MAN是直角三角形,且MN是斜边,
∴,即:,
∴×16(k4+2k2+1)=(2k﹣m)2+(2k2+2)2,
解得m=2k,
∴A(2k,﹣1),
∴B(2k,k2),
∴C(2k,2k2+1),
∵,
∴B是AC的中点,
∴AB=BC,
又∵△MAB与△MBC的高都是点M到直线AC的距离,
∴△MAB与△MBC的高相等,
∴△MAB与△MBC的面积相等.
46.(2018•福建)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
【解析】解:(1)设AB=tm,则BC=(100﹣2t)m,
根据题意得t(100﹣2t)=450,解得t1=5,t2=45,
当t=5时,100﹣2t=90>20,不合题意舍去;
当t=45时,100﹣2t=10,
答:AD的长为10m;
(2)设AD=xm,矩形菜园ABCD面积为S,
S=x(100﹣x)=﹣(x﹣50)2+1250,
当a≥50时,则x=50时,S的最大值为1250;
当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,
综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1250m2;当0<a<50时,矩形菜园ABCD面积的最大值为(50a﹣a2)m2.
47.(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.
如图1,求所利用旧墙AD的长;
(2)已知0<a<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩
形菜园ABCD的面积最大,并求面积的最大值.
【解析】解:(1)设AD=x米,则AB=
依题意得,
解得x1=10,x2=90
∵a=20,且x≤a
∴x=90舍去
∴利用旧墙AD的长为10米.
(2)设AD=x米,矩形ABCD的面积为S平方米
①如果按图一方案围成矩形菜园,依题意
得:
S=,0<x<a
∵0<a<50
∴x<a<50时,S随x的增大而增大
当x=a时,S最大=50a﹣
②如按图2方案围成矩形菜园,依题意得
S=,a≤x<50+
当a<25+<50+时,即0<a<时,
则x=25+时,S最大=(25+)2=
当25+≤a,即时,S随x的增大而减小
∴x=a时,S最大=
综合①②,当0<a<时,
﹣()=
>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米
当时,两种方案围成的矩形菜园面积最大值相等.
∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;
当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.
48.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.
(1)求抛物线的解析式;
(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:
①求证:BC平分∠MBN;
②求△MBC外心的纵坐标的取值范围.
【解析】解:(1)∵抛物线过点A(0,2),
∴c=2,
当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,
∴当x<0时,y随x的增大而增大,
同理当x>0时,y随x的增大而减小,
∴抛物线的对称轴为y轴,且开口向下,即b=0,
∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,
∴△ABC为等腰三角形,
∵△ABC中有一个角为60°,
∴△ABC为等边三角形,且OC=OA=2,
设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,
∴BD=OB•cos30°=,OD=OB•sin30°=1,
∵B在C的左侧,
∴B的坐标为(﹣,﹣1),
∵B点在抛物线上,且c=2,b=0,
∴3a+2=﹣1,
解得:a=﹣1,
则抛物线解析式为y=﹣x2+2;
(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),
∵MN与直线y=﹣2x平行,
∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,
∴直线MN解析式为y=﹣2x﹣x12+2x1+2,
把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,
∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,
作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,
∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,
∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,
在Rt△BEM中,tan∠MBE===﹣x1,
在Rt△BFN中,tan∠NBF=====﹣x1,
∵tan∠MBE=tan∠NBF,
∴∠MBE=∠NBF,
则BC平分∠MBN;
②∵y轴为BC的垂直平分线,
∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,
根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,
∵x12=2﹣y1,
∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,
由①得:﹣1<y1≤2,
∴﹣<y0≤0,
则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题,共55页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题③: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题③,共25页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题②: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题②,共24页。