|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省温州市瓯北一中2022年中考二模数学试题含解析
    立即下载
    加入资料篮
    浙江省温州市瓯北一中2022年中考二模数学试题含解析01
    浙江省温州市瓯北一中2022年中考二模数学试题含解析02
    浙江省温州市瓯北一中2022年中考二模数学试题含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省温州市瓯北一中2022年中考二模数学试题含解析

    展开
    这是一份浙江省温州市瓯北一中2022年中考二模数学试题含解析,共17页。试卷主要包含了有一组数据,-2的倒数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )

    A. B.2 C. D.
    2.4的平方根是( )
    A.4 B.±4 C.±2 D.2
    3.在下列各平面图形中,是圆锥的表面展开图的是( )
    A. B. C. D.
    4.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是(  )
    A. B.
    C. D.
    5.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
    A.13 B.11或13 C.11 D.12
    6.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    7.-2的倒数是( )
    A.-2 B. C. D.2
    8.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
    A. B. C. D.
    9.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
    A.3.1; B.4; C.2; D.6.1.
    10.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知一组数据:3,3,4,5,5,则它的方差为____________
    12.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.
    14.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.

    15.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
    16.分式方程-1=的解是x=________.
    17.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
    三、解答题(共7小题,满分69分)
    18.(10分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.

    19.(5分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
    (1)当m=6时,求线段CD的长;
    (2)设圆心O1在直线上方,试用n的代数式表示m;
    (3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.

    20.(8分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
    求证:△ABE≌△CAD;求∠BFD的度数.
    21.(10分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.

    (1)求证:BE=DF;
    (2)当t=   秒时,DF的长度有最小值,最小值等于   ;
    (3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
    22.(10分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

    23.(12分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= .

    24.(14分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
    (1)求证:四边形ABCD是平行四边形;
    (2)直接写出图中所有相等的线段(AE=CF除外).




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.
    详解:
    连接AC,

    由网格特点和勾股定理可知,
    AC=,
    AC2+AB2=10,BC2=10,
    ∴AC2+AB2=BC2,
    ∴△ABC是直角三角形,
    ∴tan∠ABC=.
    点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
    2、C
    【解析】
    根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选D.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    3、C
    【解析】
    结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.
    【详解】
    解:圆锥的展开图是由一个扇形和一个圆形组成的图形.
    故选C.
    【点睛】
    考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.
    4、C
    【解析】
    【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
    【详解】∵pv=k(k为常数,k>0)
    ∴p=(p>0,v>0,k>0),
    故选C.
    【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
    5、B
    【解析】
    试题解析:x2-8x+15=0,
    分解因式得:(x-3)(x-5)=0,
    可得x-3=0或x-5=0,
    解得:x1=3,x2=5,
    若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
    若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
    综上,△ABC的周长为11或1.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
    6、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    7、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    8、A
    【解析】
    列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
    【详解】
    列表如下:








    绿

    绿



    ﹣﹣﹣

    (红,红)

    (红,红)

    (绿,红)

    (绿,绿)



    (红,红)

    ﹣﹣﹣

    (红,红)

    (绿,红)

    (绿,红)



    (红,红)

    (红,红)

    ﹣﹣﹣

    (绿,红)

    (绿,红)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    ﹣﹣﹣

    (绿,绿)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    (绿,绿)

    ﹣﹣﹣

    ∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
    ∴,
    故选A.
    9、A
    【解析】∵数据组2、x、8、1、1、2的众数是2,
    ∴x=2,
    ∴这组数据按从小到大排列为:2、2、2、1、1、8,
    ∴这组数据的中位数是:(2+1)÷2=3.1.
    故选A.
    10、C
    【解析】
    分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
    解答:解:根据题意:2500000=2.5×1.
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.
    故答案为.
    12、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    13、15p
    【解析】
    试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.
    故答案为15π.
    考点:圆锥的计算.
    14、2
    【解析】
    根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.
    【详解】
    ∵在△ACB中,∠ACB=90°,AC=6,BC=8,
    ∴,
    ∵点D为AB的中点,
    ∴,
    ∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.
    ∴CB1=BC=8,
    ∴DB1=CB1-CD=8﹣5=2,
    故答案为:2.
    【点睛】
    本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.
    15、1.06×104
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:10600=1.06×104,
    故答案为:1.06×104
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、-5
    【解析】
    两边同时乘以(x+3)(x-3),得
    6-x2+9=-x2-3x,
    解得:x=-5,
    检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
    故答案为:-5.
    【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.
    17、1
    【解析】
    根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
    【详解】
    ∵点(a,b)在一次函数y=2x-1的图象上,
    ∴b=2a-1,
    ∴2a-b=1,
    ∴4a-2b=6,
    ∴4a-2b-1=6-1=1,
    故答案为:1.
    【点睛】
    本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.

    三、解答题(共7小题,满分69分)
    18、135°
    【解析】
    先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
    ∵AD=DE=CE,
    ∴AD=DE=CE=BC,
    ∴∠DAE=∠AED,∠CBE=∠CEB,
    ∵∠DEC=90°,
    ∴∠EDC=∠ECD=45°,
    设∠DAE=∠AED=x,∠CBE=∠CEB=y,
    ∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
    ∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
    ,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
    ∴2x﹣45°=225°﹣2y,
    ∴x+y=135°,
    ∴∠AEB=360°﹣135°﹣90°=135°.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
    19、 (1)CD=;(2)m= ;(3) n的值为或
    【解析】
    分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
    (2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
    (3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
    详解:(1)过点作⊥,垂足为点,连接.

    在Rt△,∴.
    ∵=6,∴.
    由勾股定理得: .
    ∵⊥,∴.
    (2)在Rt△,∴.
    在Rt△中,.
    在Rt△中,.
    可得: ,解得.
    (3)△成为等腰三角形可分以下几种情况:
    ① 当圆心、在弦异侧时
    i),即,由,解得.
    即圆心距等于、的半径的和,就有、外切不合题意舍去.
    ii),由 ,
    解得:,即 ,解得.
    ②当圆心、在弦同侧时,同理可得: .
    ∵是钝角,∴只能是,即,解得.
    综上所述:n的值为或.
    点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
    20、(1)证明见解析;(2).
    【解析】
    试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;
    (2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.
    试题解析:(1)∵△ABC为等边三角形,
    ∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
    在△ABE和△CAD中,
    AB=CA, ∠BAC=∠C,AE =CD,
    ∴△ABE≌△CAD(SAS),
    (2)∵△ABE≌△CAD,
    ∴∠ABE=∠CAD,
    ∵∠BAD+∠CAD=60°,
    ∴∠BAD+∠EBA=60°,
    ∵∠BFD=∠ABE+∠BAD,
    ∴∠BFD=60°.
    21、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
    【解析】
    (1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
    (2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
    (3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
    ②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
    【详解】
    (1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
    ∴∠DCF=∠BCE,
    ∵四边形ABCD是菱形,
    ∴DC=BC,
    在△DCF和△BCE中,
    ,
    ∴△DCF≌△BCE(SAS),
    ∴DF=BE;
    (2)如图1,作BE′⊥DA交DA的延长线于E′.

    当点E运动至点E′时,DF=BE′,此时DF最小,
    在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
    ∴设AE′=x,则BE′=2x,
    ∴AB=x=6,x=6,
    则AE′=6
    ∴DE′=6+6,DF=BE′=12,
    时间t=6+6,
    故答案为:6+6,12;
    (3)∵CE=CF,
    ∴∠CEQ<90°,
    ①当∠EQP=90°时,如图2①,

    ∵∠ECF=∠BCD,BC=DC,EC=FC,
    ∴∠CBD=∠CEF,
    ∵∠BPC=∠EPQ,
    ∴∠BCP=∠EQP=90°,
    ∵AB=CD=6,tan∠ABC=tan∠ADC=2,
    ∴DE=6,
    ∴t=6秒;
    ②当∠EPQ=90°时,如图2②,

    ∵菱形ABCD的对角线AC⊥BD,
    ∴EC与AC重合,
    ∴DE=6,
    ∴t=6秒,
    综上所述,t=6秒或6秒时,△EPQ是直角三角形.
    【点睛】
    此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
    22、操作平台C离地面的高度为7.6m.
    【解析】
    分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
    详解:作CE⊥BD于F,AF⊥CE于F,如图2,

    易得四边形AHEF为矩形,
    ∴EF=AH=3.4m,∠HAF=90°,
    ∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
    在Rt△ACF中,∵sin∠CAF=,
    ∴CF=9sin28°=9×0.47=4.23,
    ∴CE=CF+EF=4.23+3.4≈7.6(m),
    答:操作平台C离地面的高度为7.6m.
    点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
    23、(1)见解析;(2)1.
    【解析】
    试题分析:根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
    试题解析:(1)如图所示:E点即为所求.

    (2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,
    ∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.
    考点:作图—复杂作图;平行四边形的性质
    24、(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.
    【解析】
    整体分析:
    (1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.
    解:(1)证明:∵AD∥BC,DE∥BF,
    ∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.
    在△ADE和△CBF中,,
    ∴△ADE≌△CBF,∴AD=BC,
    ∴四边形ABCD是平行四边形.
    (2)AD=BC,EC=AF,ED=BF,AB=DC.
    理由如下:
    ∵△ADE≌△CBF,∴AD=BC,ED=BF.
    ∵AE=CF,∴EC=AF.
    ∵四边形ABCD是平行四边形,∴AB=DC.

    相关试卷

    2023年浙江省温州市洞头区中考数学二模试卷(含解析): 这是一份2023年浙江省温州市洞头区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省温州市中考数学二模试卷(含解析): 这是一份2023年浙江省温州市中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省温州市中考数学二模试卷(含解析): 这是一份2023年浙江省温州市中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map