云南省南涧彝族自治县市级名校2021-2022学年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是( )
A.π B. C.π D.π
2.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )
A. B. C. D.
3.下列各式中的变形,错误的是(( )
A. B. C. D.
4.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有( )
A.5个 B.4个 C.3个 D.2个
5.4的平方根是( )
A.4 B.±4 C.±2 D.2
6.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )
A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
8.计算3×(﹣5)的结果等于( )
A.﹣15 B.﹣8 C.8 D.15
9.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )
A.(1,1) B.(2,1) C.(2,2) D.(3,1)
10.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是
A.180个,160个 B.170个,160个
C.170个,180个 D.160个,200个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D′处,点C的对应点C′的坐标为______.
12.等腰梯形是__________对称图形.
13.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
14.把多项式x3﹣25x分解因式的结果是_____
15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.
16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.
三、解答题(共8题,共72分)
17.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
18.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
运动项目 | 频数(人数) |
羽毛球 | 30 |
篮球 |
|
乒乓球 | 36 |
排球 |
|
足球 | 12 |
请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?
19.(8分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
20.(8分)(1)计算:sin45°
(2)解不等式组:
21.(8分)先化简后求值:已知:x=﹣2,求的值.
22.(10分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
(1)判断四边形ACBD的形状,并说明理由;
(2)求证:ME=AD.
23.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
24.先化简,再求值:,其中x=,y=.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.
【详解】
∵AB是⊙O的切线,
∴∠OAB=90°,
∵半径OA=2,OB交⊙O于C,∠B=30°,
∴∠AOB=60°,
∴劣弧ACˆ的长是:=,
故选:C.
【点睛】
本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.
2、B
【解析】
由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
【详解】
∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四边形ABCD为矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF与△CDF中,
,
∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四边形ABCD为矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
设FA=x,则FC=x,FD=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
则FD=6-x=.
故选B.
【点睛】
考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
3、D
【解析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
4、C
【解析】
试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.
考点:等腰三角形的性质;勾股定理.
5、C
【解析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选D.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
6、A
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
【详解】
解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
故侧面积=πrl=π×6×4=14πcm1.
故选:A.
【点睛】
此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
7、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
8、A
【解析】
按照有理数的运算规则计算即可.
【详解】
原式=-3×5=-15,故选择A.
【点睛】
本题考查了有理数的运算,注意符号不要搞错.
9、B
【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.
【详解】
解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:
∴棋子“炮”的坐标为(2,1),
故答案为:B.
【点睛】
本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
10、B
【解析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;
160出现了2次,出现的次数最多,则众数是160;
故选B.
【点睛】
此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(2,1)
【解析】
由已知条件得到AD′=AD=,AO=AB=1,根据勾股定理得到OD′==1,于是得到结论.
【详解】
解:∵ AD′=AD=,AO=AB=1,
∴OD′==1,
∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案为:(2,1)
【点睛】
本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
12、轴
【解析】
根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.
【详解】
画图如下:
结合图形,根据轴对称的定义及等腰梯形的特征可知,
等腰梯形是轴对称图形.
故答案为:轴
【点睛】
本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.
13、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
14、x(x+5)(x﹣5).
【解析】
分析:首先提取公因式x,再利用平方差公式分解因式即可.
详解:x3-25x
=x(x2-25)
=x(x+5)(x-5).
故答案为x(x+5)(x-5).
点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
15、1或
【解析】
由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
【详解】
解:∵四边形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四边形ABFE是平行四边形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
当△EFG为等腰三角形时,
当EF=EG时,EG=,
如图1,
过点D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF时,如图2,
过点G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
过点D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
故答案为1或.
【点睛】
本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
16、1
【解析】
由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.
【详解】
解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
∴△ABD∽△ECD,
∴,
即 ,
解得:AB= =1(米).
故答案为1.
【点睛】
本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.
三、解答题(共8题,共72分)
17、(1);(2)
【解析】
分析:(1)直接利用概率公式求解;
(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
详解:(1)甲队最终获胜的概率是;
(2)画树状图为:
共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
所以甲队最终获胜的概率=.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
18、 (1)24,1;(2) 54;(3)360.
【解析】
(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;
(2)利用360°乘以对应的百分比即可求得;
(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.
【详解】
(1)抽取的人数是36÷30%=120(人),
则a=120×20%=24,
b=120﹣30﹣24﹣36﹣12=1.
故答案是:24,1;
(2)“排球”所在的扇形的圆心角为360°×=54°,
故答案是:54;
(3)全校总人数是120÷10%=1200(人),
则选择参加乒乓球运动的人数是1200×30%=360(人).
19、(1)117(2)见解析(3)B(4)30
【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;
(2)根据以上所求结果即可补全图形;
(3)根据中位数的定义求解可得;
(4)总人数乘以样本中A等级人数所占比例可得.
【详解】
解:(1)∵总人数为18÷45%=40人,
∴C等级人数为40﹣(4+18+5)=13人,
则C对应的扇形的圆心角是360°×=117°,
故答案为117;
(2)补全条形图如下:
(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案为B.
(4)估计足球运球测试成绩达到A级的学生有300×=30人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
21、
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
解:原式=1﹣•(÷)=1﹣••=1﹣=,
当x=﹣2时,
原式===.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
22、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.
【解析】
(1)根据题意得出,即可得出结论;
(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.
【详解】
(1)解:四边形ACBD是菱形;理由如下:
根据题意得:AC=BC=BD=AD,
∴四边形ACBD是菱形(四条边相等的四边形是菱形);
(2)证明:∵DE∥AB,BE∥CD,
∴四边形BEDM是平行四边形,
∵四边形ACBD是菱形,
∴AB⊥CD,
∴∠BMD=90°,
∴四边形ACBD是矩形,
∴ME=BD,
∵AD=BD,
∴ME=AD.
【点睛】
本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.
23、(1);(2)∠CDE=2∠A.
【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
【详解】
(1)∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,由勾股定理得:
AB=
=,
∴AO=AB=.
∵OD⊥AB,
∴∠AOE=∠ACB=90°,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴,
∴OE=
=.
(2)∠CDE=2∠A.理由如下:
连结OC,
∵OA=OC,
∴∠1=∠A,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∴∠2+∠CDE=90°,
∵OD⊥AB,
∴∠2+∠3=90°,
∴∠3=∠CDE.
∵∠3=∠A+∠1=2∠A,
∴∠CDE=2∠A.
考点:切线的性质;探究型;和差倍分.
24、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
天津市东丽市级名校2021-2022学年中考数学押题试卷含解析: 这是一份天津市东丽市级名校2021-2022学年中考数学押题试卷含解析,共19页。
天津市东丽市级名校2021-2022学年中考数学押题试卷含解析: 这是一份天津市东丽市级名校2021-2022学年中考数学押题试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”,下列运算中,正确的是,如图是测量一物体体积的过程,下列运算正确的是等内容,欢迎下载使用。
黄金卷市级名校2021-2022学年中考数学押题试卷含解析: 这是一份黄金卷市级名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,计算36÷,下列各式等内容,欢迎下载使用。