|试卷下载
搜索
    上传资料 赚现金
    云南省曲靖市罗平县重点名校2021-2022学年中考数学押题试卷含解析
    立即下载
    加入资料篮
    云南省曲靖市罗平县重点名校2021-2022学年中考数学押题试卷含解析01
    云南省曲靖市罗平县重点名校2021-2022学年中考数学押题试卷含解析02
    云南省曲靖市罗平县重点名校2021-2022学年中考数学押题试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省曲靖市罗平县重点名校2021-2022学年中考数学押题试卷含解析

    展开
    这是一份云南省曲靖市罗平县重点名校2021-2022学年中考数学押题试卷含解析,共22页。试卷主要包含了有下列四种说法等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
    A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
    2.已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )
    A. B. C. D.
    3.的绝对值是( )
    A. B. C. D.
    4.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是(  )

    A. B. C. D.
    5.如果代数式有意义,则实数x的取值范围是( )
    A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
    6.有下列四种说法:
    ①半径确定了,圆就确定了;②直径是弦;
    ③弦是直径;④半圆是弧,但弧不一定是半圆.
    其中,错误的说法有(  )
    A.1种 B.2种 C.3种 D.4种
    7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )

    A.10,15 B.13,15 C.13,20 D.15,15
    8.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
    A. B. C. D.
    9.若(x﹣1)0=1成立,则x的取值范围是(  )
    A.x=﹣1 B.x=1 C.x≠0 D.x≠1
    10.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )

    A.10 B.12 C.20 D.24
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
    12.如图,已知的半径为2,内接于,,则__________.

    13.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
    14.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
    15.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
    16.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.

    三、解答题(共8题,共72分)
    17.(8分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.

    18.(8分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
    (1)求证:BC是⊙O的切线;
    (2)⊙O的半径为5,tanA=,求FD的长.

    19.(8分)(1)解方程:x2﹣5x﹣6=0;
    (2)解不等式组:.
    20.(8分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
    (2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
    21.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
    规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
    规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
    小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
    22.(10分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.

    (1)直接写出∠D与∠MAC之间的数量关系;
    (2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;
    ②如图2,直接写出AB,BD与BC之间的数量关系;
    (3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.
    23.(12分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
    24.如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
    (1)试判断CD与圆O的位置关系,并说明理由;
    (2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
    2、A
    【解析】
    分析:根据反比例函数的性质,可得答案.
    详解:由题意,得
    k=-3,图象位于第二象限,或第四象限,
    在每一象限内,y随x的增大而增大,
    ∵3<6,
    ∴x1<x2<0,
    故选A.
    点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
    3、C
    【解析】
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
    【详解】
    在数轴上,点到原点的距离是,
    所以,的绝对值是,
    故选C.
    【点睛】
    错因分析  容易题,失分原因:未掌握绝对值的概念.
    4、B
    【解析】
    连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
    【详解】
    解,连结OB,

    ∵、是的切线,
    ∴,,则,
    ∵四边形APBO的内角和为360°,即,
    ∴,
    又∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
    5、C
    【解析】
    根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.
    【详解】
    由题意得,x+3≥0,x≠0,
    解得x≥−3且x≠0,
    故选C.
    【点睛】
    本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.
    6、B
    【解析】
    根据弦的定义、弧的定义、以及确定圆的条件即可解决.
    【详解】
    解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
    直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
    弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
    ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
    其中错误说法的是①③两个.
    故选B.
    【点睛】
    本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
    7、D
    【解析】
    将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
    【详解】
    将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
    【点睛】
    本题考查中位数和众数的概念,熟记概念即可快速解答.
    8、A
    【解析】
    列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
    【详解】
    列表如下:








    绿

    绿



    ﹣﹣﹣

    (红,红)

    (红,红)

    (绿,红)

    (绿,绿)



    (红,红)

    ﹣﹣﹣

    (红,红)

    (绿,红)

    (绿,红)



    (红,红)

    (红,红)

    ﹣﹣﹣

    (绿,红)

    (绿,红)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    ﹣﹣﹣

    (绿,绿)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    (绿,绿)

    ﹣﹣﹣

    ∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
    ∴,
    故选A.
    9、D
    【解析】
    试题解析:由题意可知:x-1≠0,
    x≠1
    故选D.
    10、B
    【解析】
    根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.
    【详解】
    解:根据图象可知点P在BC上运动时,此时BP不断增大,
    由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,
    由于M是曲线部分的最低点,
    ∴此时BP最小,即BP⊥AC,BP=4,
    ∴由勾股定理可知:PC=3,
    由于图象的曲线部分是轴对称图形,
    ∴PA=3,
    ∴AC=6,
    ∴△ABC的面积为:×4×6=12.
    故选:B.
    【点睛】
    本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
    详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
    ∴k=1×1=1.
    点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
    12、
    【解析】
    分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
    详解:连接AD、AE、OA、OB,

    ∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
    ∴∠ADB=45°,
    ∴∠AOB=90°,
    ∵OA=OB=2,
    ∴AB=2,
    故答案为:2.
    点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    13、1
    【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.
    解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
    ∴y=(8-x)x,即y=-x2+8x,
    ∴当x=- =1时,y取得最大值.
    故答案为:1.
    14、3
    【解析】
    由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
    【详解】
    ∵一元二次方程ax2+bx+c=0有实数根,
    ∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
    ∴-c≥-3,即c≤3,
    ∴c的最大值为3.
    故答案为:3.
    【点睛】
    本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
    15、﹣1
    【解析】
    根据“方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.
    【详解】
    ∵方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数,
    ∴1﹣m2=0,
    解得:m=1 或﹣1,
    把 m=1代入原方程得:
    x2+2=0,
    该方程无解,
    ∴m=1不合题意,舍去,
    把 m=﹣1代入原方程得:
    x2=0,
    解得:x1=x2=0,(符合题意),
    ∴m=﹣1,
    故答案为﹣1.
    【点睛】
    本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.
    16、60°
    【解析】
    先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
    【详解】
    ∵DA⊥CE,
    ∴∠DAE=90°,
    ∵∠1=30°,
    ∴∠BAD=60°,
    又∵AB∥CD,
    ∴∠D=∠BAD=60°,
    故答案为60°.
    【点睛】
    本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.

    三、解答题(共8题,共72分)
    17、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=﹣80x+60(0≤x≤);(3)机场大巴与货车相遇地到机场C的路程为km.
    【解析】
    (1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;
    (2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;
    (3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程.
    【详解】
    解:(1)60+20=80(km),
    (h)
    ∴连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h.
    (2)设所求函数表达式为y=kx+b(k≠0),
    将点(0,60)、代入y=kx+b,
    得: 解得:
    ∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为
    (3)设线段ED对应的函数表达式为y=mx+n(m≠0)
    将点代入y=mx+n,
    得: 解得:
    ∴线段ED对应的函数表达式为
    解方程组得
    ∴机场大巴与货车相遇地到机场C的路程为km.

    【点睛】
    本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.
    18、(1)证明见解析(2)
    【解析】
    (1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
    (2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
    【详解】
    (1)∵点G是AE的中点,
    ∴OD⊥AE,
    ∵FC=BC,
    ∴∠CBF=∠CFB,
    ∵∠CFB=∠DFG,
    ∴∠CBF=∠DFG
    ∵OB=OD,
    ∴∠D=∠OBD,
    ∵∠D+∠DFG=90°,
    ∴∠OBD+∠CBF=90°
    即∠ABC=90°
    ∵OB是⊙O的半径,
    ∴BC是⊙O的切线;
    (2)连接AD,

    ∵OA=5,tanA=,
    ∴OG=3,AG=4,
    ∴DG=OD﹣OG=2,
    ∵AB是⊙O的直径,
    ∴∠ADF=90°,
    ∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
    ∴∠DAG=∠FDG,
    ∴△DAG∽△FDG,
    ∴,
    ∴DG2=AG•FG,
    ∴4=4FG,
    ∴FG=1
    ∴由勾股定理可知:FD=.
    【点睛】
    本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
    19、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.
    【解析】
    (1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
    (2)先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    (1)x2﹣5x﹣6=0,
    (x﹣6)(x+1)=0,
    x﹣6=0,x+1=0,
    x1=6,x2=﹣1;
    (2)
    ∵解不等式①得:x≥﹣1,
    解不等式②得:x<1,
    ∴不等式组的解集为﹣1≤x<1.
    【点睛】
    本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.
    20、 (1)3;(2) x﹣y,1.
    【解析】
    (1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
    【详解】
    (1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
    =3×+2-+3-1-1,
    =+2−+3-1-1,
    =3;
    (2)(x﹣)÷,
    =,
    =
    =x-y,
    当x=,y=-1时,原式=−+1=1.
    【点睛】
    本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
    21、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
    【解析】
    (1)利用列举法,列举所有的可能情况即可;
    (2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
    【详解】
    (1)所有可能出现的结果如下:,,,,,,,,共9种;
    (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
    ∴在规划1中,(小黄赢);
    红心牌点数是黑桃牌点数的整倍数有4种可能,
    ∴在规划2中,(小黄赢).
    ∵,∴小黄要在游戏中获胜,小黄会选择规则1.
    【点睛】
    考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    22、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC= 或.
    【解析】
    (1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,
    (2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,
    (3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.
    【详解】
    解:(1)相等或互补;
    理由:当点C,D在直线MN同侧时,如图1,
    ∵AC⊥CD,BD⊥MN,
    ∴∠ACD=∠BDC=90°,
    在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,
    ∵∠BAC+∠CAM=180°,
    ∴∠CAM=∠D;
    当点C,D在直线MN两侧时,如图2,
    ∵∠ACD=∠ABD=90°,∠AEC=∠BED,
    ∴∠CAB=∠D,
    ∵∠CAB+∠CAM=180°,
    ∴∠CAM+∠D=180°,
    即:∠D与∠MAC之间的数量是相等或互补;

    (2)①猜想:BD+AB=BC
    如图3,在射线AM上截取AF=BD,连接CF.
    又∵∠D=∠FAC,CD=AC
    ∴△BCD≌△FCA,
    ∴BC=FC,∠BCD=∠FCA
    ∵AC⊥CD
    ∴∠ACD=90°
    即∠ACB+∠BCD=90°
    ∴∠ACB+∠FCA=90°
    即∠FCB=90°
    ∴BF=
    ∵AF+AB=BF=
    ∴BD+AB=;

    ②如图2,在射线AM上截取AF=BD,连接CF,
    又∵∠D=∠FAC,CD=AC
    ∴△BCD≌△FCA,
    ∴BC=FC,∠BCD=∠FCA
    ∵AC⊥CD
    ∴∠ACD=90°
    即∠ACB+∠BCD=90°
    ∴∠ACB+∠FCA=90°
    即∠FCB=90°
    ∴BF=
    ∵AB﹣AF=BF=
    ∴AB﹣BD=;

    (3)①当点C,D在直线MN同侧时,如图3﹣1,
    由(2)①知,△ACF≌△DCB,
    ∴CF=BC,∠ACF=∠ACD=90°,
    ∴∠ABC=45°,
    ∵∠ABD=90°,
    ∴∠CBD=45°,
    过点D作DG⊥BC于G,
    在Rt△BDG中,∠CBD=45°,BD=,
    ∴DG=BG=1,
    在Rt△CGD中,∠BCD=30°,
    ∴CG=DG=,
    ∴BC=CG+BG=+1,

    ②当点C,D在直线MN两侧时,如图2﹣1,
    过点D作DG⊥CB交CB的延长线于G,
    同①的方法得,BG=1,CG=,
    ∴BC=CG﹣BG=﹣1
    即:BC= 或,

    【点睛】
    本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.
    23、 (1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【解析】
    (1)根据题意只需要证明a2+b2=c2,即可解答
    (2)根据题意将n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
    【详解】
    (1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
    c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
    ∴a2+b2=c2,
    ∵n为正整数,
    ∴a、b、c是一组勾股数;
    (2)解:∵n=5
    ∴a= (m2﹣52),b=5m,c= (m2+25),
    ∵直角三角形的一边长为37,
    ∴分三种情况讨论,
    ①当a=37时, (m2﹣52)=37,
    解得m=±3 (不合题意,舍去)
    ②当y=37时,5m=37,
    解得m= (不合题意舍去);
    ③当z=37时,37= (m2+n2),
    解得m=±7,
    ∵m>n>0,m、n是互质的奇数,
    ∴m=7,
    把m=7代入①②得,x=12,y=1.
    综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【点睛】
    此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键
    24、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
    【解析】
    (1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
    (2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
    【详解】
    (1)CD与圆O的位置关系是相切,
    理由是:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠CAB,
    ∵∠CAB=∠CAD,
    ∴∠OCA=∠CAD,
    ∴OC∥AD,
    ∵CD⊥AD,
    ∴OC⊥CD,
    ∵OC为半径,
    ∴CD与圆O的位置关系是相切;
    (2)连接BC,

    ∵AB是⊙O的直径,
    ∴∠BCA=90°,
    ∵圆O的半径为3,
    ∴AB=6,
    ∵∠CAB=30°,

    ∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
    ∴△CAB∽△DAC,



    【点睛】
    本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.

    相关试卷

    云南省曲靖市重点达标名校2021-2022学年中考数学押题试卷含解析: 这是一份云南省曲靖市重点达标名校2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022年云南省曲靖市沾益县重点名校中考数学模试卷含解析: 这是一份2022年云南省曲靖市沾益县重点名校中考数学模试卷含解析,共17页。试卷主要包含了下列实数中,有理数是,下列方程中,是一元二次方程的是,实数﹣5.22的绝对值是,若点A等内容,欢迎下载使用。

    2022届云南省罗平县重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届云南省罗平县重点达标名校中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,已知点A,若a+b=3,,则ab等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map