搜索
    上传资料 赚现金
    英语朗读宝

    2021玉溪高一下学期期末数学试题含答案

    2021玉溪高一下学期期末数学试题含答案第1页
    2021玉溪高一下学期期末数学试题含答案第2页
    2021玉溪高一下学期期末数学试题含答案第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021玉溪高一下学期期末数学试题含答案

    展开

    这是一份2021玉溪高一下学期期末数学试题含答案,共10页。试卷主要包含了已知中,,则的面积为,在矩形中,,E为的中点,则,设,则等内容,欢迎下载使用。
    秘密★启用前【考试时间:20217159:00-11:004玉溪市20202021学年下学期高一年级期末教学质量检测数学试卷注意事项:1.答卷前,考生务必用黑色碳素笔将自己的学校、姓名、班级、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的学校、姓名、班级、准考证号、考场号、座位号,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.选择题(本题共10个小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,则    A    B    C    D2.复数,则Z的虚部是(    A4    B    C3    D3.已知,则“”是“”的(    A.充分不必要条件    B.必要不充分条件    C.充要条件    D.既不充分也不必要条件4.已知中,,则的面积为(    A    B    C    D5.在矩形中,E的中点,则    A    B    C    D6.如图所示的铅笔模型是由正三棱柱和正三棱锥构成的,正三棱锥的底面边长和高都是1,正三棱柱的高是正三棱锥的高的20倍,则这只铅笔模型的体积是(    A    B    C    D7.若正实数ab满足,则的最小值为(    A2    B4    C8    D168.设,则(    A    B    C    D9.在三棱锥中,侧棱与平面垂直,,等腰直角三角形的斜边长为2,则三棱锥的侧面积为(    A    B    C    D10.已知定义在上的奇函数上单调递增,且,若实数x满足,则x的取值范围是(    A    B    C    D二、多选题(本题共2个小题,每小题5分,共10分在每小题给出的选项中,有多项符合题目要求全部选对得5分,部分选对得3分,有选错的,得0分.)11.已知点ONP所在平面内,下列说法正确的有(    A.若,则O的内心B.若,则C.若,则P的垂心D.若,则为等边三角形12.如图,四棱锥的底面为矩形,底面,点E的中点,过ADE三点的平面与平面的交线为l,则(    A平面                    B平面C.直线l所成角的余弦值为D.平面截四棱锥所得的上,下两部分几何体的体积之比为三、填空题:(本题共4小题,每小题5分,共20分)13.已知,若,则___________14.设复数,其中ab为实数,若,则_________15.若直线与函数的图象有两个不同交点,则实数m的取值范围是______16.定义:对于函数,若定义域内存在实数满足:,则称为“局部奇函数”.若是定义在区间上的“局部奇函数”,则实数m的取值范围是________四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知,且1)求的坐标.2)当时,若,求的夹角的正弦值.18.(本小题满分12分)已知函数满足下列3个条件:①函数的周期为;②是函数的对称轴;③1)请选其中两个条件,并求出此时函数的解析式;2)若,求函数的最值.19.(本小题满分12分)中,角ABC所对的边分别为abc,且满足1)求角A的大小;2)若,求面积的最大值.20.(本小题满分12分)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,M上异于CD的点.1)证明:平面平面2)在线段上是否存在点P,使得平面,并说明理由.21.(本小题满分12分)在刚刷完漆的室内放置空气净化器,净化过程中有害气体含量P单位:)与时间t(单位:h)的关系为:,其中k是正的常数,如果在前消除了10%的有害气体,那么1后还剩百分之几的有害气体?2)有害气体减少50%需要花多少时间?(精确到(参考数据:22.(本小题满分12分)如图,已知平行四边形中,E的中点,将沿直线翻折成,若M的中点,则在翻折过程中(点平面).1)证明:平面2)当平面平面时,求三棱锥的体积.玉溪市20202021学年下学期高一年级期末教学质量检测数学参考答案1-5 CBABC  6-10 DCDBA  11BCD  12ACD13    14    15    1617.解(1               1          3         52)当              6       8                9的夹角的正弦值为        1018.解:(1法一:选①②,∵               2                      4            5                6法二:选①③,                   2         4            5            6注:若选②③无法确定解析式,如按下列方法作答的酌情给3选②③T2)由题意得,因为,所以                8时.有最大值2         10时.有最小值        1219.解:(1)由由正弦定理可得:            1可得           3中,            5可得:            62)由(1)知,且根据余弦定理代入可得:           8所以            10当且仅当时取等号,所以面积的最大值为                 1220.解:(1)∵平面平面,平面平面平面平面平面        2为直径,∴         4平面平面平面∴平面平面        62)存在.当P中点时,平面             7证明如下:连为正方形,∴O中点,           8连接P中点,∴       10平面平面平面          1221.解:(1)根据题意得,则        2故当时,         410个小时后还剩81%的有害气体;           62)根据题意得           7,即           9             11故有害气体减少50%需要花33小时.            1222.解:(1)证明:取的中点Q,连结,因为MQ均为中点,          2又因为,且因此四边形为平行四边形,          4平面平面平面         62)取的中点O,∴∵平面平面,平面平面平面      8因为M的中点,所以M到平面的距离为         10所以,三棱锥的体积为                    12

    相关试卷

    2023玉溪高一下学期期末数学试题含答案:

    这是一份2023玉溪高一下学期期末数学试题含答案,共8页。

    2021玉溪高一下学期期末数学试题扫描版含答案:

    这是一份2021玉溪高一下学期期末数学试题扫描版含答案,文件包含高一数学答案pdf、高一下学期数学试卷pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    2021玉溪高一下学期期末数学试题扫描版含答案:

    这是一份2021玉溪高一下学期期末数学试题扫描版含答案,文件包含高一数学答案pdf、高一下学期数学试卷pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map