


陕西省安康市旬阳县达标名校2021-2022学年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1. “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为
A.675×102 B.67.5×102 C.6.75×104 D.6.75×105
2.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=或t=.其中正确的结论有( )
A.①②③④ B.①②④
C.①② D.②③④
3.下列计算错误的是( )
A.4x3•2x2=8x5 B.a4﹣a3=a
C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
4.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A. B. C. D.
5.不等式4-2x>0的解集在数轴上表示为( )
A. B. C. D.
6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
A. B. C. D.
7.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )
A. B. C. D.
8.|﹣3|=( )
A. B.﹣ C.3 D.﹣3
9.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
10.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
12.若+(y﹣2018)2=0,则x﹣2+y0=_____.
13.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
14.一组数据1,4,4,3,4,3,4的众数是_____.
15.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.
16.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
三、解答题(共8题,共72分)
17.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
18.(8分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.
19.(8分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
20.(8分)计算:×(2﹣)﹣÷+.
21.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.
22.(10分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|
23.(12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.
(2)求至少有一辆汽车向左转的概率.
24.如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
(1)求证:AE是⊙O的切线;
(2)若AE=12,CD=10,求⊙O的半径。
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
67500一共5位,从而67500=6.75×104,
故选C.
2、C
【解析】
观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
【详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y小路=100t-100,
令y小带=y小路,可得60t=100t-100,
解得t=2.5,
即小带和小路两直线的交点横坐标为t=2.5,
此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,
∴③不正确;
令|y小带-y小路|=50,
可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,
可解得t=,
当100-40t=-50时,
可解得t=,
又当t=时,y小带=50,此时小路还没出发,
当t=时,小路到达B城,y小带=250.
综上可知当t的值为或或或时,两车相距50 km,
∴④不正确.
故选C.
【点睛】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.
3、B
【解析】
根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
【详解】
A选项:4x3•1x1=8x5,故原题计算正确;
B选项:a4和a3不是同类项,不能合并,故原题计算错误;
C选项:(-x1)5=-x10,故原题计算正确;
D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
故选:B.
【点睛】
考查了整式的乘法,关键是掌握整式的乘法各计算法则.
4、C
【解析】
分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
详解:∵OB=1,AB⊥OB,点A在函数 (x<0)的图象上,
∴当x=−1时,y=2,
∴A(−1,2).
∵此矩形向右平移3个单位长度到的位置,
∴B1(2,0),
∴A1(2,2).
∵点A1在函数 (x>0)的图象上,
∴k=4,
∴反比例函数的解析式为,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
∴P
故选C.
点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
5、D
【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-4,
系数化为1,得:x<2,
故选D.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
6、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
【详解】
画树状图如下:
由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
7、C
【解析】
从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
故选C.
8、C
【解析】
根据绝对值的定义解答即可.
【详解】
|-3|=3
故选:C
【点睛】
本题考查的是绝对值,理解绝对值的定义是关键.
9、B
【解析】
分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
详解:画树状图,得
∴共有8种情况,经过每个路口都是绿灯的有一种,
∴实际这样的机会是.
故选B.
点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
10、B
【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
【详解】
解,连结OB,
∵、是的切线,
∴,,则,
∵四边形APBO的内角和为360°,即,
∴,
又∵,,
∴,
∵,
∴,
∵,
∴,
故选:B.
【点睛】
本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
∵点D、E分别是边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC,
∴△ADE∽△ABC,
则=,即,
解得:x=1,
即四边形BCED的面积为1,
故答案为1.
【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
12、1
【解析】
直接利用偶次方的性质以及二次根式的性质分别化简得出答案.
【详解】
解:∵+(y﹣1018)1=0,
∴x﹣1=0,y﹣1018=0,
解得:x=1,y=1018,
则x﹣1+y0=1﹣1+10180=1+1=1.
故答案为:1.
【点睛】
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
13、y3>y1>y2.
【解析】
试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.
考点:二次函数的函数值比较大小.
14、1
【解析】
本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故答案为1.
【点睛】
本题为统计题,考查了众数的定义,是基础题型.
15、-1
【解析】
根据二次函数的性质将x=2代入二次函数解析式中即可.
【详解】
f(x)=x2-3x+1
f(2)= 22-32+1=-1.
故答案为-1.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
16、
【解析】
根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
【详解】
解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
∴从中任意摸出一个球,则摸出白球的概率是.
故答案为:.
【点睛】
本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
三、解答题(共8题,共72分)
17、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
18、(1)证明见解析;(2)
【解析】
(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
【详解】
(1)证明:连接OC,AC.
∵CF⊥AB,CE⊥AD,且CE=CF.
∴∠CAE=∠CAB.
∵OC=OA,
∴∠CAB=∠OCA.
∴∠CAE=∠OCA.
∴OC∥AE.
∴∠OCE+∠AEC=180°,
∵∠AEC=90°,
∴∠OCE=90°即OC⊥CE,
∵OC是⊙O的半径,点C为半径外端,
∴CE是⊙O的切线.
(2)解:∵AD=CD,
∴∠DAC=∠DCA=∠CAB,
∴DC∥AB,
∵∠CAE=∠OCA,
∴OC∥AD,
∴四边形AOCD是平行四边形,
∴OC=AD=a,AB=2a,
∵∠CAE=∠CAB,
∴CD=CB=a,
∴CB=OC=OB,
∴△OCB是等边三角形,
在Rt△CFB中,CF= ,
∴S四边形ABCD= (DC+AB)•CF=
【点睛】
本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
19、(1) ; (2) .
【解析】
(1)根据概率=所求情况数与总情况数之比代入解得即可.
(2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
【详解】
(1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;
(2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):
由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.
【点睛】
本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.
20、5-
【解析】
分析:先化简各二次根式,再根据混合运算顺序依次计算可得.
详解:原式=3×(2-)-+
=6--+
=5-
点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.
21、证明见解析.
【解析】
由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
证明:∵BE∥DF,∴∠ABE=∠D,
在△ABE和△FDC中,
∠ABE=∠D,AB=FD,∠A=∠F
∴△ABE≌△FDC(ASA),
∴AE=FC.
“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
22、4
【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.
【详解】
(﹣2)0+()﹣1+4cos30°﹣|4﹣|
=1+3+4×﹣(4﹣2)
=4+2﹣4+2
=4.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
23、 (1);(2).
【解析】
(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;
(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.
【详解】
(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:
∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,
所以两辆汽车都不直行的概率为;
(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等
∴P(至少有一辆汽车向左转)=.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.
24、(1)证明见解析;(2).
【解析】
(1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
(2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
【详解】
(1)证明:连接OA,交BC于G,
∵∠ABC=∠ADB.∠ABC=∠ADE,
∴∠ADB=∠ADE,
∴,
∴OA⊥BC,
∵四边形ABCE是平行四边形,
∴AE∥BC,
∴OA⊥AE,
∴AE是⊙O的切线;
(2)连接OC,
∵AB=AC=CE,
∴∠CAE=∠E,
∵四边形ABCE是平行四边形,
∴BC∥AE,∠ABC=∠E,
∴∠ADC=∠ABC=∠E,
∴△ACE∽△DAE,,
∵AE=12,CD=10,
∴AE2=DE•CE,
144=(10+CE)CE,
解得:CE=8或-18(舍),
∴AC=CE=8,
∴Rt△AGC中,AG==2,
设⊙O的半径为r,
由勾股定理得:r2=62+(r-2)2,
r=,
则⊙O的半径是.
【点睛】
此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
2022年陕西省安康市旬阳县中考数学模试卷含解析: 这是一份2022年陕西省安康市旬阳县中考数学模试卷含解析,共16页。试卷主要包含了学校小组名同学的身高等内容,欢迎下载使用。
2021-2022学年陕西省铜川市名校中考数学全真模拟试题含解析: 这是一份2021-2022学年陕西省铜川市名校中考数学全真模拟试题含解析,共18页。试卷主要包含了答题时请按要求用笔,下列说法错误的是,的平方根是等内容,欢迎下载使用。
2021-2022学年陕西省安康市名校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年陕西省安康市名校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算÷的结果是等内容,欢迎下载使用。