北师大数学七下复习阶梯训练:整式的乘除(优生加练)含解析
展开
这是一份北师大数学七下复习阶梯训练:整式的乘除(优生加练)含解析,共16页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。
整式的乘除(优生加练)一、单选题1.在矩形ABCD内,将两张边长分别为a和b( )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为 ,图2中阴影部分的面积为 .当 时, 的值是( ) A. B. C. D.2.记 ,则 ( ) A.一个偶数 B.一个质数C.一个整数的平方 D.一个整数的立方3.已知 , ,…, 都是正数,如果 M=( + +…+ )( + +…+ ),N=( + +…+ )( + +…+ ),那么 M,N 的大小关系是( ) A.M>N B.M=N C.M<N D.不确定4.如图,大正方形的边长为 ,小正方形的边长为 , , 表示四个相同长方形的两边长( ).则① ;② ;③ ;④ ,中正确的是( ) A.①②③ B.①②④ C.①③④ D.①②③④5.我国宋朝数学家杨辉1261年的著作《详解九章算法》给出了在 为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则 展开式中含 项的系数是 A.2016 B.2017 C.2018 D.20196.在求 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设: ……①然后在①式的两边都乘以6,得: ……②②-①得 ,即 ,所以 .得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出 的值?你的答案是( )A. B. C. D.7.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( ) A.2 B.4 C.6 D.88.已知a,b,c为非零的实数,则 的可能值的个数为( )A.4 B.5 C.6 D.79.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值( )A.总不小于2 B.总不小于7C.可为任何实数 D.可能为负数10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个 B.4个 C.3个 D.2个二、填空题11.数学活动课上,小明同学尝试将正方形纸片剪去一个小正方形,剩余部分沿虚线剪开,拼成新的图形。现给出下列3种不同的剪、拼方案,其中能够验证平方差公式的方案是 。(请填上正确的序号)12.已知下列等式:;① ;② ;③ ;④ ……由此规律,则 .13.我国宋朝数学家杨辉在他的著作 解:九章算法 中提出“杨辉三角” 如图 ,此图揭示了 为非负整数 展开式的项数及各项系数的有关规律. 例如: ,它只有一项,系数为1;系数和为1; ,它有两项,系数分别为1,1,系数和为2; ,它有三项,系数分别为1,2,1,系数和为4; ,它有四项,系数分别为1,3,3,1,系数和为8; ,则 的展开式共有 项,系数和为 .14.观察、归纳:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…请你根据以上等式的规律,完成下列问题:⑴(x﹣1)(xn+…+x2+x+1)= ﹣1;⑵计算:1+2+22+…+22019= .15.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).①图2中的阴影部分的面积为 ;②观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 ;③根据(2)中的结论,若x+y=5,x•y= ,则(x﹣y)2= ;④实际上通过计算图形的面积可以探求相应的等式.如图3,你发现的等式是 .16.已知a1= ,a2= ,a3= ,…,an= ,Sn=a1•a2…an,则S2015= .三、解答题17.小张和小李玩猜数游戏,小张说:“你随便选三个一位数按这样的步骤去运算,①把第一个数乘5;②再加上10;③把所得结果乘以2;④加上第二个数;⑤把所得结果乘以10;⑥加上第三个数;只要你告诉我最后的得数,我就能知道你所想的三个一位数.”小李按照以上步骤试了几次,过程如下:
小李选定了1,2,3小张选定了5,6,7①②③④⑤⑥小张介绍了他的计算奥秘:将最后的得数减去200,所得的结果百位数就是第一个数,十位数就是第二个数,个位数就是第三个数.探究一:证明小张想法的符合题意性
小李选定了,,①②③④⑤⑥小张将最后的得数减去200:,所以结果百位数就是第一个数,十位数就是第二个数,个位数就是第三个数.小李听完后深受启发也设计了自己的运算程序,让小张随便选三个一位数按这样的步骤去运算:①把第一个数乘5,再加上5;②把第二个数乘20,再加上2;③将①的运算结果与②的运算结果相乘,再加上第三个数;④减去第一个数与第二个数乘积的100倍.小李说:“只要小张告诉我最后的得数,我就能知道小张一开始所想的三个一位数。”小李是如何知道的呢?请你模仿探究一的证明过程填写下表:探究二:证明小李想法的符合题意性
设小张选定的三个数为,,① ② ③ ④ 请介绍小李的计算奥秘,描述:你是怎样由最后的得数,识别出最初选定的三个一位数的?18.证明:在a+b+c=0时,a3+b3+c3=3abc.19.如图,正方形 和 的边长分别为 、 ,试用 、 的代数式表示三角形 的面积 .20.教材中,在计算如图1所示的正方形ABCD的面积时,分别从两个不同的角度进行了操作:
(1)把它看成是一个大正方形,则它的面积为 ;
(2)把它看成是2个小长方形和2个小正方形组成的,则它的面积为 ;因此,可得到等式: .① 类比教材中的方法,由图2中的大正方形可得等式: .② 试在图2右边空白处画出面积为 的长方形的示意图(标注好a、b),由图形可知,多项式 可分解因式为: .在上方空白处画出②中的示意图③ 若将代数式 展开后合并同类项,得到多项式N,则多项式N的项数一共有 项.21.解答发现:(1) 当a=3,b=2时,分别求代数式(a+b)2和a2+2ab+b2的值,并观察这两个代数式的值有什么关系?
(2)再多找几组你喜欢的数试一试,从中你发现了什么规律?
(3)利用你所发现的规律计算a=1. 625,b=0. 375时,a2+2ab+b2的值?22.5a-{-3b+[6c-2a-(a-c)]}-[9a-(7b+c)]四、综合题23.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了 为正整数)的展开式(按 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应 展开式中的系数;第四行的四个数1,3,3,1,恰好对应 展开式中的系数. (1)根据上面的规律,写出 的展开式;(2)利用上面的规律计算: .24.观察下列算式。(x-2)(x-3)=x2-5x+6;(x+5)(x-2)=x2+3x-10;(x+3)(x+6)=x2+9x+18;(x+9)(x-10)=x2-x-90;……(1)如上面算式中的两个一次二项式相乘,结果是一个 次 项式;其中一次项的系数和常数项分别和原来的两个二项式的常数项具有怎样的关系? 从上面的计算中总结规律,写出下式的结果:(x+a)(x+b)= .(2)请利用你的结论直接写出下列两个二项式相乘的结果:(x+5)(x-1)= (x+11)(x-30)= .25.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按如图2、3的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.(1)如图2,点E、Q、P在同一直线上,点F、Q、G在同一直线上,右下角与左上角的阴影部分的面积的差为 (用含a、b的代数式表示),矩形ABCD的面积为 (用含a、b的代数式表示);(2)如图3,点F、H、Q、G在同一直线上,设右下角与左上角的阴影部分的面积的差为S,PC=x.当BC的长度变化时,按照同样的放置方式,S始终保持不变,那么a、b必须满足什么条件?
答案解析部分【解析】【解答】解:∵ , ,∴ .故答案为:B.【分析】利用割补法表示出 和 ,然后作差,利用整式的混合运算法则进行化简即可得出结果.【解析】【解答】解:∵ , ∴ ,∴ ,∴ ,∴ ,∴ 是一个整数的平方;故答案为:C.
【分析】本题利用平方差公式计算即可,关键在等式两边同时乘(3-1)。【解析】【解答】解:设 ∵ , ,…, 都是正数∴∴故答案为:A.【分析】设 ,可得 ,再根据 , ,…, 都是正数即可判断 .【解析】【解答】解:由图得x-y=n, x+y=m,
则(x-y)(x+y)=x2-y2=mn,
x-y+x+y=2x=m+n,
(x+y)-(x-y)=2y=m-n,
∴4xy=(m+n)(m-n)=m2-n2,
∴,
∴
∴①②③ 正确, ④ 错误;
故答案为:A.
【分析】根据图示把m、n用含x、y的代数式表示,两式结合,把x,y用m,n的代数式表示,根据x、y的值分别求出各选项左式的结果再比较即可判断。【解析】【解答】解:由题意, ,可知,展开式中第二项为 展开式中含 项的系数是2019.故答案为: D .【分析】根据表中系数找出规律,根据x2018是(x+1)2019的展开式中的第二项,即可可解决问题.【解析】【解答】∵M=1+a+a2+a3+a4+…+a2018①,∴aM=a+a2+a3+a4+…+a2014+a2019②,②-①,可得aM-M=a2019-1,即(a-1)M=a2019-1,∴M= .故答案为:B.
【分析】设M=1+a+a2+a3+a4+…+a2018①,将等式两边分别诚意a,可得aM=a+a2+a3+a4+…+a2014+a2019②,利用等式性质用②-①即可求出M的值.【解析】【解答】解:∵A=(2+1)(22+1)(24+1)(28+1)+1,∴A=(2-1)(2+1)(22+1)(24+1)(28+1)+1,=(22-1)(22+1)(24+1)(28+1)+1,=(24-1)(24+1)(28+1)+1,=(28-1)(28+1)+1,=216-1+1,=216.
∵21=2,22=4,23=8,24=16,25=32,
∴末位数字以4为周期,
∴16=4×4,
∴216的末位数字是6,
∴原式末位数字是6.
故答案为:C.
【分析】将原式转化成A=(2-1)(2+1)(22+1)(24+1)(28+1)+1,利用平方差公式计算即可得A=216,再以2的幂的末位数字以4为周期,由16=4×4得原式末位数字.【解析】【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述: 的可能值的个数为4.故答案为:A.【分析】需要分类讨论:①a、b、c三个数都是正数时,②a、b、c中有两个正数时,设为a>0,b>0,c<0,设为a>0,b<0,c>0,设为a<0,b>0,c>0,③a、b、c有一个正数时,设为a>0,b<0,c<0,设为a<0,b>0,c<0,设为a<0,b<0,c>0,④a、b、c三个数都是负数时,分别根据有理数的乘法法则,及绝对值的意义去绝对值符号,再约分即可一一算出答案。【解析】【解答】解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故答案为:A.【分析】平方具有非负性,(x+1)2最小是0,(y﹣2)2 最小是0,(x+1)2+(y﹣2)2+2最小是2,即总不小于2【解析】【解答】解:(1)当x+3=0,x2+x﹣1≠0时,解得x=﹣3;(2)当x2+x﹣1=1时,解得x=﹣2或1.(3)当x2+x﹣1=﹣1,x+3为偶数时,解得x=﹣1因而原方程所有整数解是﹣3,﹣2,1,﹣1共4个.故答案为:B.【分析】解本题关键要知道:任何非零的数0次幂为1,1的任何次幂都为1;-1的偶数次幂也为1.本题的易错点为丢解.【解析】【解答】解: ① 阴影部分的面积=a2-b2,拼凑的矩形的面积=(a+b)(a-b),
∴a2-b2=(a+b)(a-b);
② 阴影部分的面积=a2-b2,如图,先取点,再作ME⊥AD,NF⊥AD,
∵ME=AE=NF=DF,AE+FD=ME+NF=a-b,
∴拼凑的平行四边形的面积=(a+b)(a-b),
∴a2-b2=(a+b)(a-b);
③阴影部分的面积=a2-b2,拼凑的矩形的面积=(a+b)2b≠(a+b)(a-b);
故答案为: ①② .
【分析】看图先把阴影部分的面积表示出来,再根据矩形的面积公式或平行四边形的面积公式分别求出拼凑而成的面积,两者比较即可判断.【解析】【解答】解:∵① ;② ;③ ;④ ,……, ∴ ,∴ 13+23+33+…+503-(13+23+33+…+203)=(1+2+3+…+50)2-(1+2+3+…+20)2=12752-2102=1581525.故答案为:1581525.
【分析】首先根据前4项的结果推出一般规律: ,然后把原式变形为n=50和n=20时的两个等式之差,再利用平方差公式计算即可.【解析】【解答】解:根据规律可得,(a+b)n共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b)n各项系数的和等于2n故答案为 :n+1,2n【分析】本题通过阅读理解寻找规律,观察可得(a+b)n(n为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b)n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b)n的项数以及各项系数的和即可.【解析】【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…根据以上等式的规律可得:(1)(x﹣1)(xn+…+ x2+x+1)=xn+1﹣1;(2)原式=(2﹣1)(1+2+22+…+22019)=22020﹣1,故答案为:xn+1,22020﹣1.【分析】(1)由前3个式子归纳总结得到一般性规律,写出即可;(2)在所求的式子的左边乘以(2-1),再利用得出的规律计算即可求出值.【解析】【解答】解:①(b﹣a)2;②(a+b)2﹣(a﹣b)2=4ab;③当x+y=5,x•y= 时,(x﹣y)2=(x+y)2﹣4xy=52﹣4× =16;④(a+b)•(3a+b)=3a2+4ab+b2.【分析】①表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;②根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可;③将(x﹣y)2变形为(x+y)2﹣4xy,再代入求值即可;④根据大长方形的面积等于各部分的面积之和列式整理即可.【解析】【解答】解: …故答案为: 【分析】利用平方差公式将各式变形,可得规律an= ,据此将进行变形,然后约分即可.【解析】【分析】(1)①根据题意列出算式即可;②根据题意列出算式即可;③根据题意列出算式即可;④根据题意列出算式即可;
(2)根据(1)的数据可得:将最后的得数减去10,即-10=。【解析】【分析】利用公式a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc),由a+b+c=0即可得证.【解析】【分析】根据题意,可以得到关系:利用S=S正方形ABCD+S正方形CEFG−S△BEF−S△ABE−S△DGF.根据三角形和正方形面积的求法,可以得到S=m2+n2−(m+n)•n−m2−n•(n−m),化解即可.【解析】【解答】解:⑵①根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;②根据长方形的面积公式与长,宽之间的关系画出图形即可;③由 ,共有 项. 共有 项.知 展开后合并同类项共 【分析】根据多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;根据长方形的面积公式与长,宽之间的关系画出图形即可.【解析】【分析】这类试题尤其是找规律性的题目,一定要选出具体的规律,然后一组组数据的代入,可以清晰的看出。【解析】【分析】有多重括号时,一般先去小括号,再去中括号,最后去大括号的顺序进行。【解析】【分析】(1) 根据三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,先作图,然后依此列出等式即可;
(2)设a=2,b=-1,利用(2)的结果列出等式,然后进行有理数的乘方运算,即可得出结果.【解析】【解答】解:(1)根据题意,可得规律:两个一次二项式相乘,结果是一个二次三项式,其中一次项的系数、常数项分别和原来的两个二项式的常数项之和、常数项之积相等,
∴(x+a)(x+b)=x2+(a+b)x+ab ;
故答案为:二,三, 一次项的系数和常数项分别是原来的两个二项式的常数项之和与常数项之积 , x2+(a+b)x+ab .
(2)由(1)得 (x+5)(x-1)=x2+4x-5 ;
(x+11)(x-30)=x2-19x-330 .
故答案为: x2+4x-5 , x2-19x-330 .
【分析】(1)根据题意,可得规律:两个一次二项式相乘,结果是一个二次三项式,其中一次项的系数、常数项分别和原来的两个二项式的常数项之和、常数项之积相等,依此即可得出下列二项式相乘的结果;
(2)根据(1)得出的规律直接写出结果即可.【解析】【解答】(1) 右下角的图形为边长为a的正方形,面积为 . 左上角图形为长方形,其长宽分别为4b,3b,面积为 .则右下角与左上角的阴影部分的面积的差为 .矩形ABCD的长宽分别为a+4b,a+3b,面积为 故答案为 ; 【分析】(1)表示出左上角与右下角部分的面积,求出之差即可;
(2)表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式。
相关试卷
这是一份浙教版数学七下复习阶梯训练:因式分解(优生加练)含解析,共8页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。
这是一份浙教版数学七下复习阶梯训练:整式的乘除(优生加练)含解析,共14页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。
这是一份浙教版数学七下复习阶梯训练:整式的乘除(优生集训)含解析,共22页。试卷主要包含了综合题等内容,欢迎下载使用。