江苏省泰州中学附属初级中学2021-2022学年中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )
A.BO=OH B.DF=CE C.DH=CG D.AB=AE
2.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )
A.1 B.2 C.3 D.4
3.方程x2﹣3x=0的根是( )
A.x=0 B.x=3 C., D.,
4.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )
A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
5.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:
人数 | 2 | 3 | 4 | 1 |
分数 | 80 | 85 | 90 | 95 |
则得分的众数和中位数分别是( )
A.90和87.5 B.95和85 C.90和85 D.85和87.5
6.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 4 | 12 | 16 | 17 | 1 |
关于这组数据,下列说法正确的是( )
A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
8.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
步数(万步) | 1.0 | 1.2 | 1.1 | 1.4 | 1.3 |
天数 | 3 | 3 | 5 | 7 | 12 |
在每天所走的步数这组数据中,众数和中位数分别是( )
A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4
9.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
10.观察下列图案,是轴对称而不是中心对称的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.
12.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
13.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.
14.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.
15.如果m,n互为相反数,那么|m+n﹣2016|=___________.
16.分解因式:3m2﹣6mn+3n2=_____.
17.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD的相似比为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .
19.(5分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
(1)求出的值;
(2)求直线AB对应的一次函数的表达式;
(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).
20.(8分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).
请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.
21.(10分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
(1)画出△ABC关于直线n的对称图形△A′B′C′;
(2)直线m上存在一点P,使△APB的周长最小;
①在直线m上作出该点P;(保留画图痕迹)
②△APB的周长的最小值为 .(直接写出结果)
22.(10分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
23.(12分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)
24.(14分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.
(1)求证;∠BDC=∠A.
(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
同理可证EC=CG.
∵DH=CG,∴DF=CE,故B正确.
无法证明AE=AB,故选D.
2、C
【解析】
分析:
过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
综上所述,符合要求的半径为2的圆共有3个.
故选C.
点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
3、D
【解析】
先将方程左边提公因式x,解方程即可得答案.
【详解】
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3,
故选:D.
【点睛】
本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.
4、D
【解析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
∴AE∥BC,故C选项正确,
∴∠EAC=∠C,故B选项正确,
∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
故选D.
【点睛】
本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
5、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
解:在这一组数据中90是出现次数最多的,故众数是90;
排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;
故选:A.
“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
7、B
【解析】
①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
【详解】
①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
∴③④⑤正确.
故选B.
【点睛】
本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
8、B
【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
【详解】
在这组数据中出现次数最多的是1.1,即众数是1.1.
要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
故选B.
【点睛】
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
9、C
【解析】
试题分析:28000=1.1×1.故选C.
考点:科学记数法—表示较大的数.
10、A
【解析】
试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:
A、是轴对称图形,不是中心对称图形,故本选项符合题意;
B、不是轴对称图形,是中心对称图形,故本选项不符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选A.
点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.
点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.
12、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
13、
【解析】
连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
【详解】
解:连接CD,
∵DE垂直平分AC,
∴AD=CD,
∴∠DCA=∠BAC=45°,
∴△ADC是等腰直角三角形,
∴,∠ADC=90°,
∴∠BDC=90°,
∵∠ACB=75°,
∴∠BCD=30°,
∴BC= ,
故答案为.
【点睛】
此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形
14、
【解析】
过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
【详解】
解:过点B作BF⊥OC于点F,
由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
∵,
∴,,
∵AD∥BF
∴S△BCF∽S△ACD,
又∵,
∴BF:AD=2:5,
∵S△OAD=S△OBF,
∴×OD×AD =×OF×BF
∴BF:AD=2:5= OD:OF
易证:S△OED∽S△OBF,
∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
∵S四边形EDFB=,
∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
∴k=2 S△OBF=.
故答案为.
【点睛】
本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
15、1.
【解析】
试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.
考点:1.绝对值的意义;2.相反数的性质.
16、3(m-n)2
【解析】
原式==
故填:
17、3:1.
【解析】
∵△AOB与△COD关于点O成位似图形,
∴△AOB∽△COD,
则△AOB与△COD的相似比为OB:OD=3:1,
故答案为3:1 (或).
三、解答题(共7小题,满分69分)
18、甲、乙获胜的机会不相同.
【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.
∴
∴甲、乙获胜的机会不相同.
考点:可能性大小的判断
点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.
19、(2)2;(2)y=x+2;(3).
【解析】
(2)确定A、B、C的坐标即可解决问题;
(2)理由待定系数法即可解决问题;
(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
【详解】
解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
∴A(2,2),B(-2,-2),C(3,2)
∴k=2.
(2)设直线AB的解析式为y=mx+n,则有,
解得,
∴直线AB的解析式为y=x+2.
(3)∵C、D关于直线AB对称,
∴D(0,4)
作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,
此时PC+PD的值最小,最小值=CD′=.
【点睛】
本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
20、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
(2)根据条形统计图求出捐4本的人数为,再画出图形即可;
(3)用360°乘以所捐图书是6本的人数所占比例可得;
(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.
【详解】
(1)∵捐 2 本的人数是 15 人,占 30%,
∴该班学生人数为 15÷30%=50 人;
(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;
补图如下;
(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆
心角为 360°×=36°.
(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,
∴全校 2000 名学生共捐 2000×=6280(本),
答:全校 2000 名学生共捐 6280 册书.
【点睛】
本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
21、(1)详见解析;(2)①详见解析;②.
【解析】
(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.
【详解】
解:(1)如图△A′B′C′为所求图形.
(2)①如图:点P为所求点.
②∵△ABP的周长=AB+AP+BP=AB+AP+B''P
∴当AP与PB''共线时,△APB的周长有最小值.
∴△APB的周长的最小值AB+AB''=+3
故答案为 +3
【点睛】
本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.
22、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.
【解析】
试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;
(2)令y=40000代入解析式,求出满足条件的x的值即可;
(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.
试题解析:
(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;
(2)令w=-2x2+1400x-200000=40000,
解得:x=300或x=400,
故要使每月的利润为40000元,销售单价应定为300或400元;
(3)y=-2x2+1400x-200000=-2(x-350)2+45000,
当x=250时y=-2×2502+1400×250-200000=25000;
故最高利润为45000元,最低利润为25000元.
23、3.05米.
【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
∴sin60°=,
∴FG=2.165,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
考点:解直角三角形的应用.
24、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
2024年江苏省泰州中学附属初级中学九年级中考三模数学试题: 这是一份2024年江苏省泰州中学附属初级中学九年级中考三模数学试题,文件包含2024省泰中附中数学三模试题及答案2024省泰中附中数学三模试题docx、2024省泰中附中数学三模试题及答案2024省泰中附中数学三模参考答案docx等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
江苏省泰州市海陵区泰州中学附属初级中学2023-2024学年八年级下学期期中数学试题(原卷版+解析版): 这是一份江苏省泰州市海陵区泰州中学附属初级中学2023-2024学年八年级下学期期中数学试题(原卷版+解析版),文件包含江苏省泰州市海陵区泰州中学附属初级中学2023-2024学年八年级下学期期中数学试题原卷版docx、江苏省泰州市海陵区泰州中学附属初级中学2023-2024学年八年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
泰州市泰州中学附属初级中学2021-2022学年八年级3月月考数学试题(含解析): 这是一份泰州市泰州中学附属初级中学2021-2022学年八年级3月月考数学试题(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。