|试卷下载
终身会员
搜索
    上传资料 赚现金
    哈尔滨市第六十九中学2021-2022学年中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    哈尔滨市第六十九中学2021-2022学年中考冲刺卷数学试题含解析01
    哈尔滨市第六十九中学2021-2022学年中考冲刺卷数学试题含解析02
    哈尔滨市第六十九中学2021-2022学年中考冲刺卷数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    哈尔滨市第六十九中学2021-2022学年中考冲刺卷数学试题含解析

    展开
    这是一份哈尔滨市第六十九中学2021-2022学年中考冲刺卷数学试题含解析,共22页。试卷主要包含了估计﹣1的值为,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为(  )

    A.π B.π C.6﹣π D.2﹣π
    2.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是(  )

    A.100° B.80° C.60° D.50°
    3.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )
    A.120元 B.125元 C.135元 D.140元
    4.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是(  )

    A. B. C. D.
    5.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
    A.①② B.①③ C.①③④ D.②③④
    6.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=(  )

    A. B. C. D.
    7.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为

    A.6 B. C. D.3
    8.估计﹣1的值为(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    9.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )

    A. B. C. D.
    10.下列计算正确的是(  )
    A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
    C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_____.
    12.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.

    13.如图,在每个小正方形的边长为1的网格中,A,B为格点
    (Ⅰ)AB的长等于__
    (Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的__________________

    14.定义一种新运算:x*y=,如2*1==3,则(4*2)*(﹣1)=_____.
    15.若代数式有意义,则x的取值范围是__.
    16.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___

    三、解答题(共8题,共72分)
    17.(8分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
    (1)求被覆盖的这个数是多少?
    (2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.
    18.(8分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    19.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是   .

    20.(8分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.
    [收集数据]
    从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:
    甲:

    乙:

    [整理、描述数据]按如下分数段整理、描述这两组样本数据:
    学校
    人数
    成绩











    (说明:优秀成绩为,良好成绩为合格成绩为.)
    [分析数据]两组样本数据的平均分、中位数、众数如下表所示:
    学校
    平均分
    中位数
    众数








    其中 .
    [得出结论]
    (1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)
    (2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;
    (3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;
    (至少从两个不同的角度说明推断的合理性)
    21.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.
    (1)当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
    (2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

    22.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.

    (1)若点的横坐标为,求的面积;(用含的式子表示)
    (2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
    23.(12分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)

    24.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    本次接受调查的跳水运动员人数为   ,图①中m的值为   ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
    【详解】
    由题意可得,
    BC=CD=4,∠DCB=90°,
    连接OE,则OE=BC,

    ∴OE∥DC,
    ∴∠EOB=∠DCB=90°,
    ∴阴影部分面积为:
    =
    =6-π,
    故选C.
    【点睛】
    本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    2、B
    【解析】
    试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.
    故选:B

    3、B
    【解析】
    试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.
    解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%
    解这个方程得:x=125
    则这种服装每件的成本是125元.
    故选B.
    考点:一元一次方程的应用.
    4、C
    【解析】
    根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.
    【详解】
    解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.
    【点睛】
    考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;
    5、B
    【解析】
    结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
    【详解】
    解:①由图象可知,抛物线开口向下,所以①正确;
     ②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
     剩下的选项中都有③,所以③是正确的;
     易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
    故选:B.
    【点睛】
    本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
    6、C
    【解析】
    根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
    【详解】

    ∵D(0,3),C(4,0),
    ∴OD=3,OC=4,
    ∵∠COD=90°,
    ∴CD= =5,
    连接CD,如图所示:
    ∵∠OBD=∠OCD,
    ∴cos∠OBD=cos∠OCD= .
    故选:C.
    【点睛】
    本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
    7、D
    【解析】
    解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
    故选D.
    【点睛】
    本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
    8、C
    【解析】
    分析:根据被开方数越大算术平方根越大,可得答案.
    详解:∵<<,∴1<<5,∴3<﹣1<1.
    故选C.
    点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.
    9、B
    【解析】
    连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
    【详解】
    解:连接OA、OB,

    ∵四边形ABCD是正方形,
    ∴∠AOB=90°,∠OAB=45°,
    ∴OA=ABcos45°=4×=2,
    所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
    故选B.
    【点睛】
    本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
    10、D
    【解析】
    A、原式=a2﹣4,不符合题意;
    B、原式=a2﹣a﹣2,不符合题意;
    C、原式=a2+b2+2ab,不符合题意;
    D、原式=a2﹣2ab+b2,符合题意,
    故选D

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、60°或120°
    【解析】
    首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.
    【详解】
    解:如图:
    连接OA,过点O作OD⊥AB 于点D,
    OA=2,AB=,AD=BD=,
    AD:OA=:2,
    ∠AOD=,∠ AOB=,
    ∠AMB=,∠ANB=.
    故答案为: 或.
    【点睛】
    本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.
    12、
    【解析】
    分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
    详解:由勾股定理得:= ,即(0,4).
    矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
    A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
    点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
    13、 取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【解析】
    (Ⅰ)利用勾股定理计算即可;
    (Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【详解】
    解:(Ⅰ)AB= =,
    故答案为.
    (Ⅱ)如图取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.

    故答案为:取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【点睛】
    本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.
    14、-1
    【解析】
    利用题中的新定义计算即可求出值.
    【详解】
    解:根据题中的新定义得:原式=*(﹣1)=3*(﹣1)==﹣1.
    故答案为﹣1.
    【点睛】
    本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
    15、x3
    【解析】
    由代数式有意义,得
    x-30,
    解得x3,
    故答案为: x3.
    【点睛】
    本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.
    16、3
    【解析】
    试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
    ∴a>1.
    -=-3,即b2=12a,
    ∵一元二次方程ax2+bx+m=1有实数根,
    ∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
    ∴m的最大值为3,

    三、解答题(共8题,共72分)
    17、(1)2;(2)α=75°.
    【解析】
    (1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
    (2)直接利用特殊角的三角函数值计算得出答案.
    【详解】
    解:(1)原式=1+﹣1+﹣□+1=1,
    ∴□=1+﹣1++1﹣1=2;
    (2)∵α为三角形一内角,
    ∴0°<α<180°,
    ∴﹣15°<(α﹣15)°<165°,
    ∵2tan(α﹣15)°=,
    ∴α﹣15°=60°,
    ∴α=75°.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    18、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    19、(1)证明见解析;(2)1.
    【解析】
    【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
    (2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
    【详解】(1)∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠COD=90°.
    ∵CE∥OD,DE∥OC,
    ∴四边形OCED是平行四边形,
    又∠COD=90°,
    ∴平行四边形OCED是矩形;
    (2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
    ∵四边形ABCD是菱形,
    ∴AC=2OC=1,BD=2OD=2,
    ∴菱形ABCD的面积为:AC•BD=×1×2=1,
    故答案为1.
    【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
    20、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析
    【解析】
    首先根据乙校的成绩结合众数的定义即可得出a的值;
    (1)根据两个学校成绩的中位数进一步判断即可;
    (2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;
    (3)根据题意,从平均数以及中位数两方面加以比较分析即可.
    【详解】
    由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,
    故答案为:80;
    (1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,
    ∵小明这次竞赛得了分,在他们学校排名属中游略偏上,
    ∴小明为甲校学生,
    故答案为:甲;
    (2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,
    故答案为:;
    (3)乙校竞赛成绩较好,理由如下:
    因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.
    【点睛】
    本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.
    21、(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.
    【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
    ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
    (2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论.
    详解:(1)①如图1,

    ∵m=1,
    ∴反比例函数为y=,当x=1时,y=1,
    ∴B(1,1),
    当y=2时,
    ∴2=,
    ∴x=2,
    ∴A(2,2),
    设直线AB的解析式为y=kx+b,
    ∴,
    ∴,
    ∴直线AB的解析式为y=-x+3;
    ②四边形ABCD是菱形,
    理由如下:如图2,

    由①知,B(1,1),
    ∵BD∥y轴,
    ∴D(1,5),
    ∵点P是线段BD的中点,
    ∴P(1,3),
    当y=3时,由y=得,x=,
    由y=得,x=,
    ∴PA=1-=,PC=-1=,
    ∴PA=PC,
    ∵PB=PD,
    ∴四边形ABCD为平行四边形,
    ∵BD⊥AC,
    ∴四边形ABCD是菱形;
    (2)四边形ABCD能是正方形,
    理由:当四边形ABCD是正方形,
    ∴PA=PB=PC=PD,(设为t,t≠0),
    当x=1时,y==,
    ∴B(1,),
    ∴A(1-t,+t),
    ∴(1-t)(+t)=m,
    ∴t=1-,
    ∴点D的纵坐标为+2t=+2(1-)=8-,
    ∴D(1,8-),
    ∴1(8-)=n,
    ∴m+n=2.
    点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
    22、(1);(2)不能成为平行四边形,理由见解析
    【解析】
    (1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
    (2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
    【详解】
    解:(1)∵点在直线上,
    ∴.
    ∵点在的图像上,
    ∴,∴.
    设,
    则.
    ∵∴.
    记的面积为,



    (2)当点为中点时,其坐标为,
    ∴.
    ∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
    ∴,
    ∴,
    ∴与不能互相平分,
    ∴四边形不能成为平行四边形.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
    23、
    【解析】
    作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.
    【详解】
    如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,

    ∵∠A=∠CBD=36°,∠C=∠C,
    ∴△ABC∽△BDC,
    ∴,
    设BC=BD=AD=x,则CD=4﹣x,
    ∵BC2=AC×CD,
    ∴x2=4×(4﹣x),
    解得x1=,x2=(舍去),
    ∴BC的长.
    【点睛】
    本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    24、(1)40人;1;(2)平均数是15;众数16;中位数15.
    【解析】
    (1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
    【详解】
    解:(1)4÷10%=40(人),
    m=100-27.5-25-7.5-10=1;
    故答案为40,1.
    (2)观察条形统计图,
    ∵,
    ∴这组数据的平均数为15;
    ∵在这组数据中,16出现了12次,出现的次数最多,
    ∴这组数据的众数为16;
    ∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
    ∴这组数据的中位数为15.
    【点睛】
    本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.

    相关试卷

    2023年黑龙江省哈尔滨市第六十九中学校中考模拟数学试题(含解析): 这是一份2023年黑龙江省哈尔滨市第六十九中学校中考模拟数学试题(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022年黑龙江省哈尔滨市第六十中学中考联考数学试题含解析: 这是一份2022年黑龙江省哈尔滨市第六十中学中考联考数学试题含解析,共22页。

    2021-2022学年黑龙江省哈尔滨市第六十九中学中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年黑龙江省哈尔滨市第六十九中学中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了老师在微信群发了这样一个图,已知实数a、b满足,则,若|a|=﹣a,则a为,下列四个实数中是无理数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map