|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年黑龙江省哈尔滨市阿城区朝鲜族中学中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年黑龙江省哈尔滨市阿城区朝鲜族中学中考冲刺卷数学试题含解析01
    2021-2022学年黑龙江省哈尔滨市阿城区朝鲜族中学中考冲刺卷数学试题含解析02
    2021-2022学年黑龙江省哈尔滨市阿城区朝鲜族中学中考冲刺卷数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省哈尔滨市阿城区朝鲜族中学中考冲刺卷数学试题含解析

    展开
    这是一份2021-2022学年黑龙江省哈尔滨市阿城区朝鲜族中学中考冲刺卷数学试题含解析,共18页。试卷主要包含了若分式有意义,则a的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是(  )

    A.26°. B.44°. C.46°. D.72°
    2.在﹣3,﹣1,0,1四个数中,比﹣2小的数是(  )
    A.﹣3 B.﹣1 C.0 D.1
    3.对于两组数据A,B,如果sA2>sB2,且,则(  )
    A.这两组数据的波动相同 B.数据B的波动小一些
    C.它们的平均水平不相同 D.数据A的波动小一些
    4.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为(  )

    A.1:2 B.1:3 C.1:4 D.1:1
    5.若分式有意义,则a的取值范围是(  )
    A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数
    6.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )
    A.80 B.被抽取的80名初三学生
    C.被抽取的80名初三学生的体重 D.该校初三学生的体重
    7.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为( )

    A.4 B.5 C.8 D.10
    8.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是(  )

    A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)
    9.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )

    A.1个 B.2个 C.3个 D.4
    10.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值(  )
    A.总不小于1 B.总不小于11
    C.可为任何实数 D.可能为负数
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.点A(-2,1)在第_______象限.
    12.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .

    13.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.

    14.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:
    价格/(元/kg)

    12

    10

    8

    合计/kg

    小菲购买的数量/kg

    2

    2

    2

    6

    小琳购买的数量/kg

    1

    2

    3

    6

    从平均价格看,谁买得比较划算?( )
    A.一样划算 B.小菲划算C.小琳划算 D.无法比较
    15.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.

    16.分解因式:=______.
    三、解答题(共8题,共72分)
    17.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
    (1)求一台A型无人机和一台B型无人机的售价各是多少元?
    (2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
    ①求y与x的关系式;
    ②购进A型、B型无人机各多少台,才能使总费用最少?
    18.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
    求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.
    19.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
    (1)求证:∠BDC=∠A;
    (2)若CE=4,DE=2,求AD的长.

    20.(8分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)
    (1)若关于x的反比例函数y=过点A,求t的取值范围.
    (2)若关于x的一次函数y=bx过点A,求t的取值范围.
    (3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.
    21.(8分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.

    (1)求证:BN平分∠ABE;
    (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
    (3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
    22.(10分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.

    23.(12分)我们知道中,如果,,那么当时,的面积最大为6;
    (1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
    (2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
    24.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵图中是正五边形.
    ∴∠EAB=108°.
    ∵太阳光线互相平行,∠ABG=46°,
    ∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
    故选A.
    【点睛】
    此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
    2、A
    【解析】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
    【详解】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
    所以在-3,-1,0,1这四个数中比-2小的数是-3,
    故选A.
    【点睛】
    本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
    3、B
    【解析】
    试题解析:方差越小,波动越小.

    数据B的波动小一些.
    故选B.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    4、B
    【解析】
    根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
    【详解】
    解:∵D、E分别为△ABC的边AB、AC上的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,DE=BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积:△ABC的面积==1:4,
    ∴△ADE的面积:四边形BCED的面积=1:3;
    故选B.
    【点睛】
    本题考查三角形中位线定理及相似三角形的判定与性质.
    5、A
    【解析】
    分析:根据分母不为零,可得答案
    详解:由题意,得
    ,解得
    故选A.
    点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.
    6、C
    【解析】
    总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
    【详解】
    样本是被抽取的80名初三学生的体重,
    故选C.
    【点睛】
    此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    7、D
    【解析】
    利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.
    【详解】
    解:∵矩形ABCD的对角线AC,BD相交于点O,
    ∴∠BAD=90°,点O是线段BD的中点,
    ∵点M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴AD=2OM=1.
    ∴在直角△ABD中,由勾股定理知:BD=.
    故选:D.
    【点睛】
    本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.
    8、A
    【解析】
    直接利用平移的性质结合轴对称变换得出对应点位置.
    【详解】
    如图所示:

    顶点A2的坐标是(4,-3).
    故选A.
    【点睛】
    此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
    9、B
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①抛物线与y轴交于负半轴,则c<1,故①正确;
    ②对称轴x1,则2a+b=1.故②正确;
    ③由图可知:当x=1时,y=a+b+c<1.故③错误;
    ④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
    综上所述:正确的结论有2个.
    故选B.
    【点睛】
    本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    10、A
    【解析】
    利用配方法,根据非负数的性质即可解决问题;
    【详解】
    解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
    又∵(x+3)2≥0,(2y-1)2≥0,
    ∴x2+4y2+6x-4y+11≥1,
    故选:A.
    【点睛】
    本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    12、①②④.
    【解析】
    ①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.
    ②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.
    ③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.
    ④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.
    故一定正确的是①②④
    13、1
    【解析】
    要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
    【详解】
    解:将长方体展开,连接A、B′,
    ∵AA′=1+3+1+3=8(cm),A′B′=6cm,
    根据两点之间线段最短,AB′==1cm.
    故答案为1.

    考点:平面展开-最短路径问题.
    14、C
    【解析】
    试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.
    考点:平均数的计算.
    15、.
    【解析】
    探究规律,利用规律即可解决问题.
    【详解】
    ∵∠MON=45°,
    ∴△C2B2C2为等腰直角三角形,
    ∴C2B2=B2C2=A2B2.
    ∵正方形A2B2C2A2的边长为2,
    ∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,
    同理,可得出:OAn=An-2An=An-2An-2=,
    ∴OA2028=A2028A2027=,
    ∴A2028M=2-.
    故答案为2-.
    【点睛】
    本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.
    16、x(x+2)(x﹣2).
    【解析】
    试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
    考点:提公因式法与公式法的综合运用;因式分解.

    三、解答题(共8题,共72分)
    17、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;
    (2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.
    【解析】
    (1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;
    (2)①根据题意可以得到y与x的函数关系式;
    ②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.
    【详解】
    解:(1)设一台型无人机售价元,一台型无人机的售价元,

    解得,,
    答:一台型无人机售价元,一台型无人机的售价元;
    (2)①由题意可得,

    即y与x的函数关系式为;
    ②∵B型无人机的数量不少于A型无人机的数量的2倍,

    解得,,

    ∴当时,y取得最小值,此时,
    答:购进型、型无人机各台、台时,才能使总费用最少.
    【点睛】
    本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.
    18、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.
    【解析】
    (1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;
    (2)把(1)中的数据代入求值即可.
    【详解】
    (1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.
    答:一个A品牌的足球需40元,则一个B品牌的足球需100元;
    (2)依题意得:20×40+2×100=1(元).
    答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.
    考点:二元一次方程组的应用.
    19、(1)证明过程见解析;(2)1.
    【解析】
    试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.
    试题解析:(1)连接OD, ∵CD是⊙O切线, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,
    ∵AB为⊙O的直径, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO,
    ∵OA=OD, ∴∠ADO=∠A, ∴∠BDC=∠A;
    (2)∵CE⊥AE, ∴∠E=∠ADB=90°, ∴DB∥EC, ∴∠DCE=∠BDC, ∵∠BDC=∠A, ∴∠A=∠DCE,
    ∵∠E=∠E, ∴△AEC∽△CED, ∴, ∴EC2=DE•AE, ∴11=2(2+AD), ∴AD=1.

    考点:(1)切线的性质;(2)相似三角形的判定与性质.
    20、(1)t≤﹣;(2)t≤3;(3)t≤1.
    【解析】
    (1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.
    (2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围.
    (3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.
    【详解】
    解:(1)把A(a,1)代入y=得到:1=,
    解得a=1,
    则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.
    因为抛物线t=﹣(b﹣)2﹣的开口方向向下,且顶点坐标是(,﹣),
    所以t的取值范围为:t≤﹣;
    (2)把A(a,1)代入y=bx得到:1=ab,
    所以a=,
    则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,
    故t的取值范围为:t≤3;
    (3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,
    所以ab=1﹣(a2+b2),
    则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,
    故t的取值范围为:t≤1.
    【点睛】
    本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.
    21、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;
    (2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;
    (3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.
    详解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵M为BC的中点,
    ∴AM⊥BC,
    在Rt△ABM中,∠MAB+∠ABC=90°,
    在Rt△CBE中,∠EBC+∠ACB=90°,
    ∴∠MAB=∠EBC,
    又∵MB=MN,
    ∴△MBN为等腰直角三角形,
    ∴∠MNB=∠MBN=45°,
    ∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
    ∴∠NBE=∠ABN,即BN平分∠ABE;
    (2)设BM=CM=MN=a,
    ∵四边形DNBC是平行四边形,
    ∴DN=BC=2a,
    在△ABN和△DBN中,
    ∵,
    ∴△ABN≌△DBN(SAS),
    ∴AN=DN=2a,
    在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,
    解得:a=±(负值舍去),
    ∴BC=2a=;
    (3)∵F是AB的中点,
    ∴在Rt△MAB中,MF=AF=BF,
    ∴∠MAB=∠FMN,
    又∵∠MAB=∠CBD,
    ∴∠FMN=∠CBD,
    ∵,
    ∴,
    ∴△MFN∽△BDC.
    点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.
    22、答案见解析
    【解析】
    由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.
    23、 (1)当,时有最大值1;(2)当时,面积有最大值32.
    【解析】
    (1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
    (2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
    【详解】
    (1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
    最大面积为×6×(16-6)=1.
    故当,时有最大值1;
    (2)当,时有最大值,
    设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,








    ∴抛物线开口向下
    ∴当 时,面积有最大值32.
    【点睛】
    本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
    24、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:

    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:

    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.

    相关试卷

    黑龙江省哈尔滨市双城区2022年中考冲刺卷数学试题含解析: 这是一份黑龙江省哈尔滨市双城区2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,一元二次方程的根是,函数的图象上有两点,,若,则等内容,欢迎下载使用。

    黑龙江省哈尔滨市阿城区朝鲜族中学2022年中考数学考试模拟冲刺卷含解析: 这是一份黑龙江省哈尔滨市阿城区朝鲜族中学2022年中考数学考试模拟冲刺卷含解析

    黑龙江省哈尔滨市阿城区朝鲜族中学2021-2022学年中考数学押题试卷含解析: 这是一份黑龙江省哈尔滨市阿城区朝鲜族中学2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map